
SHIM: Semantic Hierarchical clustering with Interactive Machine learning
Fang Cao* Yuanwei Tu† Eli T. Brown‡

DePaul University

A B

C

D

Figure 1: There are three main components of the SHIM prototype: (A) stalagmite visualization of hierarchical clusters providing
several interaction types (B) associated table view to show data detail and feedback from the machine learning back-end, and
(C) a scatterplot showing relationships between points in projected space. The (D) marks the legend for the bars that show the
importance score of columns based on the rule learner and the metric learning respectively.

ABSTRACT

Clustering is widely used, and there are available techniques for
using semantic interactions to incorporate human feedback. Hier-
archical agglomerative clustering produces complete substructure,
offering rich possibilities for user interactions. However, currently
available human-in-the-loop techniques miss out on the advantages
of hierarchical agglomerative clustering. In this paper, we present a
technique, SHIM, for semantic, interactive hierarchical clustering
that helps users understand their data through exploring and mod-
ifying clusters and cluster substructure with semantic interactions
and automatic descriptive rules. The proposed solution includes a
compact visualization of hierarchical clustering customized for this
context and connected to a table view that shows data detail and
descriptive rules simultaneously. We assess our design decision and
usability with expert feedback, and use simulations to test whether
the metric learning method will improve a model with limited inter-
actions.

*e-mail: fcao1@depaul.edu
†e-mail: ytu4@depaul.edu
‡e-mail: eli.t.brown@depaul.edu

1 INTRODUCTION

Clustering is one of the core types of machine learning algorithms,
used across every variety of data mining application. A growing
number of people need to take advantage of clustering analysis,
but advanced skills are required and gaining proficiency is difficult
and time-consuming. One approach is a semantic interaction, [20]
human-in-the-loop system, where the user interacts with a visual
system, engaging with their data through semantics that are rea-
sonable for their domain. Behind the scenes, machine learning is
used to power the analytic capabilities. These systems aim to get
the best of both human and machine by playing to their strengths:
machines for raw number crunching power, humans for real sense-
making and insight. Clustering has been addressed in this context
(e.g., [7, 13, 19, 32]), however, previous work has missed out on the
opportunities afforded by hierarchical clustering (typically hierar-
chical agglomerative clustering, or HAC).

The advantages of HAC include complex cluster boundaries with
detailed substructures for a fuller picture of the data groupings.
However, current human-in-the-loop techniques have not fully taken
advantage of HAC. First, due to the substructure, there is a potential
to investigate a richer set of interaction mechanisms beyond the
assignment of each data item to a cluster. SHIM supports interac-
tions at any level of HAC clusters and adapts those interactions into
metric learning to further improve the user-based model. Second,
due to the complex cluster boundaries, tools to assist the user’s
understanding are crucial. We employ automatic descriptive rules
to provide interactive visualizations of what data attributes are im-

portant to groups and what ranges of those attributes matter most.
Third, HAC can be visualized through how leaf nodes are merged
into one whole cluster. In this process, there are many sub-clusters
formed. Current visualizations of HAC, especially dendrograms, are
not organized to facilitate interaction with all levels of the clustering.
We need to make sure that users can see not only the big picture
of the clustering but also sub-clusters with data entity information.
SHIM’s stalagmite (detailed in Sect. 3.2) meets this requirement.
Users can see a compact clustering with each cluster as a box that
can be expanded at any level of HAC to see the detailed information
through corresponding table rows as shown in Fig. 1 A and B.

In this paper, we present a semantic interaction technique that
helps users develop and understand subsets of interest by directly
interacting with sub-clusters (even leaf level nodes) to tune a cluster-
ing based on their preferences. The flexibility in interaction types
provided by hierarchical clustering’s substructure is implemented by
creating metric learning constraints for each type of interaction. Our
stalagmite visualization (Sect. 3.2) associated with an interactive
data table with descriptive rules facilitates pattern discovery while
keeping overview and detail tightly integrated. The integration be-
tween the table and stalagmite features the ability to quickly see
which attributes are important for explaining a given cluster, and see
which clusters are most affected by a selected attribute. A customiz-
able scatterplot helps users (1) see an overview of the dataset through
different projections and (2) further project several attributes learned
from descriptive rules based on the selected sub-cluster. We detail
the technique, the available interactions, and how they are translated
for the metric learning, plus the integration with rule learning and
other visualization features. A prototype implementation supports a
usage scenario demonstrating the effectiveness of the workflow on
real-world data. Machine learning experiments demonstrate that a
small number of interactions can result in a quality model. Finally,
we provide feedback from visualization experts on the design and
usability of the prototype as an illustration of the feasibility of the
technique.

2 RELATED WORK

Finding structure in data is a key component to gaining an under-
standing of data (sensemaking). Because of this need, clustering
is a common, well-studied tool in machine learning and in visual
analytics. Where machine learning and visualization come together,
in human-in-the-loop (HIL) analytics1, researchers develop tech-
niques where one may use the machine learning methods without
controlling the model-building algorithms directly. HIL systems
have been described in several frameworks [8, 22, 27, 41, 42].

A subset of HIL is using semantic interactions [21] for modelsteer-
ing: the user interacts with a system designed with visualizations and
interactivity suited to their domain knowledge (even if the domain
is fairly general data analysis) and behind the scenes a model is
built using algorithmic machine learning tools. The interactions are
converted to machine learning inputs and when a model is trained,
the result is used to update the interface so the user may benefit. This
iterative refinement of the model through continued interactions is
what closes the loop of human-in-the-loop.

2.1 Clustering and Interactive Clustering
SHIM uses semantic interactions to help users make sense of the
structure of groups of similar items in their data. Semantic inter-
action has been applied to the task of clustering before. Examples
include iCluster [7], which provides a grouping tool that uses a
learned distance function to make suggestions for points to add, and
ClusterSculptor [33], which iteratively tunes parameters to derive a

1Closely related terms used in various communities of HCI and machine
learning include interactive machine learning and human-centered machine
learning.

classification hierarchy. Another with nearly the same name, Clus-
ter Sculptor [10] allows interactively updating cluster labels, and
Clustrophile 2 [12] helps choose clustering parameters and compare
results. None of these uses hierarchical clustering, so they do not
take advantage of substructures in the clusters.

On the machine learning side of SHIM, we need a clustering
algorithm that can accept user feedback. Since clustering is unsuper-
vised (no feedback), we need a semi-supervised version, of which
several (see survey [5]) are available. Additional knowledge can be
introduced by constraints, as in Ankerst, et al. [3], and in Wagstaff,
et al. [44]. Okabe and Yamada [35] introduced a tool for human
active learning in constraint clustering. In addition to constraints
assignment, the tool provides functions including incremental dis-
tance metric learning. In their work, Lu, et al. [30], built constrained
clustering based on expectation maximization. However, none of
this work is for hierarchical clustering.

Because hierarchical clustering works based on a set of distance
measurements between all points (pairwise distances), instead of
changing the algorithm itself, we can simply change the distances.
Our solution, explained in Sect. 3, uses metric learning (for a survey
see [46]) to control the hierarchical clustering. There are several
varieties of metric learning algorithms, but a common approach is
to input constraints instead of labels. Rather than specify a label
for a given point, we specify pairs of points that should be close
together (must-link constraints) and pairs that should be separated
(cannot-link constraints). Furthermore, user interactions can be
translated into these metric learning constraints. In respect of se-
mantic clustering interactions, [45] taxonomizes interactions and
states the challenge of interpreting those interactions. Unlike their
work focusing on projected clustering, we specify four main interac-
tions for the agglomerative hierarchical clustering visualized with
SHIMat both leaf node and group levels as shown in Fig. 3 One
reason metric learning is popular in HIL systems is that it can be
effective with a small number of user inputs. Examples include
distance function learning on its own [9], clustering [7], and domain
applications [2, 23].

2.2 Rule Learning
We also need machine learning to create automatic descriptions of
clusters. There are several approaches to descriptive rules, including
learning them directly from data [14, 15, 24], or building a separate
model and then extracting them [1, 36, 43]. Based on the semantic
interaction rule-learning in DRIL [11], we use Quinlan’s C5.0 [36,
40], which learns a decision tree and then performs optimization
steps to extract IF-THEN rules. Though this technique is intended for
predictive modeling, it can be used for descriptive rules by creating
labels that separate groups of interest (clusters) from other data, as
explained in Sect. 3.3.

2.3 Related Interactive Visualizations
In SHIM, we need to visualize data, descriptive rules, and an HAC
clustering in an integrated manner. Table Lens [37] applies a fo-
cus+context (fisheye) technique that fits tabular data well. One
convenient aspect of Table Lens for our work is that the ranges of
values in each data column are clearly represented. We take ad-
vantage of this to highlight ranges that are important based on the
generated descriptive rules.

Another helpful aspect is that the table structure means every
data point appears in a predictable spot that can be lined up with
another visualization. Specifically, we need to align it with a hier-
archical visualization, similar to John et al. [26], which integrated
a data analysis step into Table Lens to show self-organizing maps
and hierarchical clustering. We take inspiration from that as well as
Icicle Plots [28], which are commonly used for hierarchical cluster-
ing. Unlike dendrograms, icicle plots have boxes to visualize each
sub-cluster, so that users are able to interact with clusters at any

Scatterplot

Machine Learning

Metric Learning

Hierarchical Clustering

Rule Learner

Input Adapter

Stalagmite Table

A

B C

D

E

Figure 2: System structure: we have three main interface com-
ponents, coordinated with each other and connected to a machine
learning backend. The interactions from the interface are passed into
an input adapter to translate them to metric learning constraints (gray
arrow). The dissimilarity matrix learned from metric learning is into
hierarchical clustering. The rule learner models descriptive rules
for each cluster. The machine learning results from all components
are visualized in stalagmite and the table for further exploration and
interaction.

level of hierarchical clustering. Our stalagmite approach is related,
but shows clusters growing from the bottom up, in contrast to the
bottom-down icicle metaphor. This choice creates some open space
in the visualization, but it means we can align individual points in
the hierarchical data visualization with the table so the correspon-
dence is always clear between the data detail view and the structural
information of the clustering. More detail on the visualization is in
Sect. 3.2.

3 INTERACTIVE HIERARCHICAL CLUSTERING FOR SENSE-
MAKING

Although hierarchical clustering is a common technique for produc-
ing groups (clusters) from raw data, especially the most common
type, hierarchical agglomerative clustering (HAC), current human-in-
the-loop techniques have not fully taken advantage of HAC. SHIM
takes advantage of HAC to help users explore subsets of interest
through a user-focused machine learning model by their iterative
interactions. Following the diagram of Fig. 2, we will explain how
SHIM helps users explore and understand how their interactions tune
the clustering visualized through three main components closely con-
nected to backend machine learning so that they can incrementally
understand how their interactions improve the clustering.

Hierarchical clustering has advantages over other methods like
k-means [29, 31] and EM [18] clustering, including: (1) modeling
complex cluster shapes, (2) providing not only a clustering of data
but a complete cluster substructure going all the way down to indi-
vidual data points, and (3) operating with only pairwise distances
between points.

The first item is helpful in general, but the latter two have par-
ticular importance for this work. Perhaps the most common type,
hierarchical agglomerative clustering (HAC) [38] works by initializ-
ing each point as a cluster and then progressively merging the closest
clusters, building up a few large clusters. This nested construction
produces a subcluster-level structure, providing detail about relation-
ships within clusters. Our work takes advantage of our visualization
called stalagmite (detailed in Sect. 3.2) that shows the whole struc-
ture of how the subclusters merged, with tools to connect it directly
to the data.

Second, the fact that only pairwise distances are necessary to
compute HAC means that the main input to the algorithm can be
controlled by a custom distance function. When it comes to incor-
porating incremental user feedback into machine learning, metric
learning algorithms are popular because they can produce good
results with small amounts of user labels. These metric learning al-
gorithms can take user feedback and produce exactly what is needed
to control HAC: a custom distance function.

The concept of this work is to take advantage of these properties
to create an interactive hierarchical clustering experience that main-
tains the advantages of HAC in terms of complexity of modeling,
but allows a rich set of semantic interactions. The concept uses
clustering as a means of data exploration. Rather than assisting the
user in perfecting a full clustering explicitly, we focus on finding
and refining a group of interest. To achieve this, we rely on user
interactions. Our technique provides flexible interactions at both
subcluster level and leaf node level (see detail in Sect. 3.1) using
our stalagmite interface (see detail in Sect. 3.2). SHIM also applies
rule learning to explain the HAC subclusters, linking descriptions to
interactive, coordinated visualizations (see detail in Sect. 3.4).

In Fig. 2, the diagram shows how the components of this tech-
nique are connected. The visualization components (scatterplot,
stalagmite, and table) show the clustering tightly connected to the
data (stalagmite to table), the descriptive rules (on the table), and
the spatial relationships between groups of points (scatterplot) for
overview. These interactive components are connected to a ma-
chine learning back-end via an input adapter (see detail in Sect. 3.3).
The table in Fig. 3 shows the set of interactions and how the input
adapter translates interactions to metric learning constraints. These
constraints are passed to learn a new metric model, which provides
a distance function that reflects user feedback. Based on the model,
the back-end produces a new dissimilarity matrix to re-run the hi-
erarchical clustering. With the new hierarchical clustering, the rule
learner models descriptive rules for each cluster. As long as a cluster
from HAC has more than one data entity, we learn descriptive rules
algorithmically to provide explanations of how groups are distinct
from the rest of the data with respect to particular attributes and their
value ranges.

These models are all integrated back into the visualizations to
show the clustering updated based on feedback, and new descriptive
rules to reflect those changes (described in Sect. 4).

3.1 Flexible Interactions with Hierarchical Clustering

One advantage of hierarchical clustering and the substructure it
produces for clusters is the possibility of a rich set of semantic
interactions. Based on work describing a full set of interactions
used in topic modeling to adjust hierarchical topics [25], we support
four main interactions as shown in the table of Fig. 3. We assume
users would like to find some subsets of points they are interested in.
SHIM provides flexibility to interact directly on either a cluster or a

Instruction

1 merge similar
nodes

(Drag and drop)

merge-nodes

split-cluster

merge-clusters

change-node's-
cluster

split up
dissimlar nodes

(Alt+click)

leaf
node

leaf
node
and

group

group

groupsmerge similar groups
(Drag and drop)

drag dissimilar node
 from its original goup

and
merge to new group
(Meta+click & drag

and drop)

2

3

4

No.

In

Visualization Metric Learning Input Interaction
name At

e

e d

c

c

c

d

d

e

e

a b c d e

c d e

a b

d e

a

b

c
d
e

a b c d e

c d e

a b

d e

a

b

c
d
e

a

b

c
d
e

b
d

b d

a
bb

a b

a
ee

a e

b
ee

b e

a
d

a d

a
e

a e

b
d

b d

b
e

b e

d
e

d e

a b c d e

c d e

a b

d e

a

b

c
d
e

a b c d e

c d e

a b

d e

a

b

c
d
e

a b c d e

c d e

a b

d e

a

b

c
d
e

Figure 3: The interactions from the interface will be passed into an input adapter to translate them to metric learning constraints.

leaf node. Instead of using the child or siblings concept, as in Hoque,
et al. [25], SHIM focuses on the groups of points in the clusters or
leaf nodes that a user interacts with. Therefore, we assign metric
learning constraints to all data entities in each interacted cluster. We
directly translate the interactions into metric learning inputs through
these transformations:

1. Merge similar nodes (merge-nodes): if two entities are
closely related to each other, the user can merge similar nodes
at the leaf level. This produces a must-link constraint between
them.

2. Split up dissimilar nodes (split-cluster): if a cluster of entities
should not be grouped together, the user can break it apart.
This produces a cannot-link constraint between each pair of its
nodes.

3. Merge similar groups (merge-clusters): if users consider
one cluster similar to another, they can merge the two. This
produces pairwise must-link constraints for items in the two
groups.

4. Move an item (change-node’s-cluster): if an item does not
belong in its group, move it to another. This produces must link
constraints between the item and the new cluster members and
cannot-link constraints between the item and its old cluster.

After the constraints are generated and a new metric model is
learned, the hierarchical clustering can be rerun, producing a new
clustering that reflects the user’s feedback.

3.2 Stalagmite Visualization
For this technique, we need a visualization of the hierarchical clus-
tering that enables the user to interact with the subclusters to provide
feedback. It must also be connected closely with the actual data for

a detailed view. We propose stalagmite, which is related to an icicle
plot, but essentially flipped, the way a stalagmite is a geological
feature grown from dripping minerals but appearing to grow from
the ground. In an icicle plot, the top level of the clustering, with all
points merged together, is represented as a box along one edge of a
rectangle. Layers of boxes follow, showing the substructure level by
level of the hierarchy. However, the structure does not have a uni-
form depth, so leaf nodes of the hierarchy may be shown at multiple
levels of the plot. This arrangement seems to emphasize the splitting
of the whole rather than the merging from individuals. In our case,
we want all the individual points and their merges emphasized and
connected to our table view of the data. To solve this, we put all the
leaf nodes together into the right-most column so that these nodes
representing an individual data point are lined up next to the table
view on the right. In that position, they can be coordinated with
the table view that also maintains a lineup of data points (detailed
in Sect. 4). We use a simplified version of TableLens [37] where
reordering is not possible because it would affect the hierarchy.

The visualization of hierarchical clustering also must be compact,
collapsible and expandable to match the fisheye effect of the table
view, otherwise it would be impossible to see individual items. Sta-
lagmite places a thin node representing each data point along one
column, positioned to align with the data in the table. It shows the
full history of how nodes were merged during clustering into larger
groups with successive rectangles that cover the vertical bounds of
all elements within them. For example, a cluster with two nodes
covers the vertical space associated with those two points, but sits
next to them. As the cluster grows in size, the rectangles grow to
the right, but they are kept as far left as possible for compactness.
Because we know the merge order of the data points, it is possible
to put the nodes in order such that aligning the rectangles with the
data points never conflicts.

3.3 Learning from Interactions
First, we suppose there is a set of n points and each point has m
attributes {xi}n

i=1 ⊆ Rm and users interact with those points on
stalagmite with four main interactions as shown in the table of
Fig. 3. The interactions from the interface will be passed into an
input adapter to translate them to metric learning constraints. Metric
learning uses optimization to learn a distance function (or metric)
that takes into account external constraints. Common constraints
include “these two points are similar” and “these two points are
dissimilar”, known as must-link and cannot-link constraints. Based
on which type of interaction the user performed, different sets of
constraints are constructed and passed to the machine learning. Here
we provide details of these constraints, corresponding to Sect. 3.1
and Fig. 3. In all cases, we codify the constraints in sets S and D.

S = {(xi,x j)|must link(xi,x j)} (1)
D = {(xi,x j)|cannot link(xi,x j)} (2)

As shown in Fig. 3, for Merge-nodes, a user merges similar nodes
by dragging and dropping a leaf node d close to another leaf node b,
so the metric learning input, adding on to any existing constraints
from previous interactions, will be

S = S∪{(b,d)} (3)

For Split-cluster, a user splits a sub-cluster that has data entities
c,d,e. Cannot links are assigned to all the pairs of the data entities
in the selected sub-cluster, so the metric learning input will be

D = D∪{(c,d),(c,e),(d,e)} (4)

For Merge-clusters, a user merges similar groups by dragging and
dropping a sub-cluster (e.g., containing d and e) close to another
sub-cluster (e.g., containing a and b), so the metric learning input
will link all pairs across the two and all pairs within each original
cluster:

S = S∪{(a,b),(a,d),(a,e),(b,d),(b,e),(d,e)} (5)

For Change-node’s-cluster, a user drags a dissimilar node (e) from
its original group (e.g., containing c, d, and e) and then merges it
into a new group (e.g., containing a, b). So the metric learning input
will be

S = S∪{(a,e),(b,e)} (6)

and
D = D∪{(e,c),(e,d)} (7)

Given these constraints, we use metric learning (ITML [16], see
Sect. 6) to learn a distance metric, which is a function dA giving
the distance between points xi and x j. In this case, it takes the
form of a Mahalanobis distance function, which is a linear distance
parameterized by a learned matrix A.

dA(xi,x j) = (xi− x j)
T A(xi− x j) (8)

The dissimilarity matrix, A, learned from metric learning provides
distances between all pairs of points, which is exactly the required
input for hierarchical clustering. The new clustering will reflect
the feedback the user provided with their interactions because it is
dependent on the learned distances.

Further, the rule learner models descriptive rules for each new
sub-cluster, completing the machine learning update based on the
interactions. For every subcluster c, we create a labeling Y of all
n data points such that yi = 1 if xi ∈ c. Thus for every subcluster,
we use these labels in a rule-learning algorithm [39] to discover the
descriptive rules that will be used to visualize the importance of
variables and key ranges. The machine learning results will all be
visualized into both stalagmite and the table for further exploration
and interaction.

3.4 Connecting Visualizations and Interactions
As shown in Fig. 2, we have three main interfaces components
connected to a machine learning backend. We will first explain how
those components are connected and why we designed SHIM as a
human-in-the-loop technique with those connections considering
user needs.

Through stalagmite, users can see the structure of hierarchical
clustering and explore data detail by expanding a subcluster (and
even a leaf node) to highlight it with an orange box and display
it in the associated table view as shown in Fig. 1 A and B. Both
stalagmite and the table view are closely connected to the scatterplot.
All the selected data entities in stalagmite and the table view will be
highlighted in the scatterplot as well. Users can select a projection
and customize the scatterplot based on their domain knowledge.
Selection in the scatterplot, as shown in Fig. 1C, will be highlighted
in both stalagmite and the table view accordingly.

We visualize machine learning results for users to easily under-
stand and interact to tune the model further. Domain experts could
assume one or a few attributes are important based on their domain
knowledge. SHIM provides the capability of selecting attributes
in the table to explore clustering. By selecting the attribute, the
most related clusters will be shown by a heatmap in stalagmite, so
that users can assume the darker colored clusters are more related
to the selected attribute (see the Usage Scenario, step 14 in Fig. 4,
for an example). This helps users focus on fewer but more related
clusters to explore. When users are exploring subclusters, they are
able to see visualized descriptive rules explaining why the clusters
are formed in the table view. These rule learner results are visualized
in two ways: (1) the rule lists are shown in the table view with the
background colors of relevant columns (detailed in Sect. 4, example
in Fig. 1B, the purple and gray highlighted ranges in the columns),
and (2) attribute weights from rule learning will be shown as bars in
the header of the table view, so that the user can see which attributes
are highly important.

When a user has just provided a round of feedback to the backend,
they will see an updated visualized clustering in stalagmite. Now
that there is a metric learning model, SHIM shows its attribute
weights as another set of bars in the table header. Rule attribute
weights do not show again until a cluster is selected in stalagmite.
In Fig. 1 B (legend in D) we see both together. In this way, users
can see which attributes are most impacted in the metric learning
based on their interactions. Metric learning returns a dissimilarity
matrix, which is the learned input for hierarchical clustering. It also
means the attribute weight change from metric learning is based
on accumulated user interactions directly. Different from the rule
weights based on a selected cluster, the metric learning weights are
based on the dissimilarity matrix behind the hierarchical clustering.

4 THE PROTOTYPE AND USAGE SCENARIO

4.1 Prototype
In this section, we explain our prototype implementation of SHIM.
There are three main components as seen in Fig. 1: (A) the stalagmite
hierarchical cluster view, (B) a table view, and (C) a scatterplot.
These three components are closely connected. Selecting a cluster
in stalagmite zooms the table so details of data entities in that group
are available. Stalagmite and the table are aligned at the item level,
even when expanded. The bars shown under the data values in the
table make it possible to investigate data trends in the clusters. The
scatterplot gets highlighted based on selections in stalagmite, and
vice versa, which is helpful for visualizing the clusters in the context
of the data. The user can choose to graph by data attributes or choose
a projection (MDS, t-SNE, and UMAP are available), and size can
be mapped to an additional attribute.

A user can directly interact with these three components to apply
their knowledge to improve hierarchical clustering. The four inter-
actions (detailed in Sect. 3.1 and enumerated in the table of Fig. 3)

10

13

14

15

16

11

12Thinking Kami should not belong to this group

1

6

7

8

9

2

3 Drag Bio Shock to the group of GTA

4

5

Result after the merge

Metric learning weights shown as pink bars

Drag “Mario Kart Wii” (id: 0) to the group (ids: 4,89 and 1)

Try to fnid a game is similar to KAMI from projection

Group Results after previous interactions

 Move Kami (id: 122) away from its original group and drag it closer to De Blob (id: 109)

Attribute weights from rule learning as purple bars below

After clicking one of the attribute with high
weight,

we can see a heat map associated in
Stalagmite

New projection based on learned rules

Found another group Max likes

Figure 4: Usage Scenario - Max used SHIM to find a group or groups of games he is interested in. Also, he found some hidden rules of his
preferences, which he can apply for his future game search. See Sect. 4

.

tell stalagmite to send metric learning input to the machine learning
backend. For merging similar data nodes together, users can drag
a cluster to a similar cluster at any hierarchical level (Merge-nodes
and Merge-clusters). For separating dissimilar data, the user can
split up a group (Split-cluster), and users can Meta+click to make
each data point in a group draggable to move to a new group by
Change-node’s-cluster. For Merge-nodes and Merge-clusters, the
dragged entity or group will be highlighted in green and the other
entity or group will be highlighted in blue. For Split-cluster, the lines
will be added to split up all the entities in that group. For Change-
node’s-cluster, the different entities will be highlighted in orange to
separate from their original group, and the entities in the new group
will be highlighted in blue. All the parent groups which contain
those entities will be highlighted as well to show the structure of the
changes.

Users may also use relationships between clusters and attributes
via stalagmite and the table. As detailed in Sect. 3.4, the table shows
the importance of each attribute in the metric learning model and
in the rules for a selected cluster. The user can click an attribute to
see a heatmap across stalagmite of the influence on clusters. These
features simplify further exploration of the clusters of interest and
their attributes.

4.2 Usage Scenario
We present a usage scenario with step numbers in Fig. 4 to show
how a user can use the SHIM prototype to find a group of games
based on user preferences. Max likes to play games and used the
SHIM prototype to find a group or groups of games he wants to play.
First, he uploaded a game dataset [6]2. As a starting entry (step
1), he projected the data points with MDS and sized the nodes by
“Review Score”. In this way, he can explore some groups projected
by MDS and select data nodes with larger sizes which means those
data nodes have higher review scores.

By selecting a big data node from one of the groups on the left
top (step 2), he noticed a row highlighted in both stalagmite and
the table. He expanded it from stalagmite to see the detail of the
data row which is the game “Bio Shock” in the table. To explore
a little bit more, he selected another big node from the group right

2This dataset has removed some special characters with data cleaning.
For example, the game “Ôkami” is incorrectly stated as “Kami”

below his previous selection in the scatterplot. He found the game
“Grand Theft Auto” (GTA) which he likes as well. He moved up one
more hierarchical level to see if he may like any other similar ones,
and then he saw another GTA which is the same game for another
platform. Since he likes “Bio Shock” and “GTA”, he simply dragged
“Bio Shock” to the “GTA” group to tell the machine learner they are
similar (step 3). After submitting those metric learning inputs, the
hierarchical clustering is updated. As shown in stalagmite, those
three games are grouped together (step 4).

Looking at the metric learning scores with pink bars, Max no-
ticed that his interactions are mostly related to “Review Score” and
“Length Polled” (step 5). Although it shows “sales” is not highly
related, Max thought sales might be an important feature to find the
games he likes. To apply those features, he used the scatterplot again
by setting the x-axis to “Sales”, the y-axis to “Length Polled” and
mapped size to “Review Score” (step 6). With this projection setting,
he selected two outliers (step 7) with large dots meaning high review
scores: (1) a game with low length polled but high sales and (2) a
game with high length polled but low sales, which he can discern
from the table view. From the associated highlight in the table view,
he found that the first game is “Mario Kart Wii” and the second one
is “Bio Shock”, which is already in his group. Thus, he dragged
“Mario Kart Wii” into his group (step 8). Meanwhile, he went one
hierarchy level up to see games in his parent group, and then he no-
ticed “Kami” which is the type of game he does not like (step 9). He
switched the projection back to MDS and selected a game close to
“Kami” in the projection (step 10). The selected game “De Bob” is
also a type of game he does not like, so he Meta + clicked his cluster
so he could drag “Kami” (highlighted in orange) out of his group
and drop it with “De Bob” (step 11). This Change-node’s-cluster
interaction marked these two games similar and “Kami” dissimilar
from its original group.

After submitting those metric learning inputs, he got updated
groups and those dragged games were highlighted in green. He
expanded his group at a higher hierarchy level to see if there were
any other games he might like. Happily, he found that he likes all
of them except “Little big Planet” (step 12). He was very satisfied
with this regrouping, so he wanted to see the rules of this group. By
clicking this new group, he saw bars of rule weights at the table
header and rule ranges highlighted in the columns which have high
rule learning weights (step 13). By clicking one of the attributes with

high weights, he can see a heatmap in the stalagmite. The cluster in
darker purple is more related to that attribute (step 14). Max explored
the groups with darker purple and rule ranges, and found that he
could see his preference is highly related to certain ranges of the
attributes (as opposed to seeing only which attributes). Therefore, he
found out some hidden rules he had not realized before: his choices
are mostly based on two attributes: “Sales” and “Used Price”. The
rules’ ranges show that he likes games with a high amount of sales
and the used price is around 25 dollars. Max was curious if based
on these two learned rules, he could find more games he likes. He
turned back to the scatterplot and set the x-axis and y-axis to “sales”
and “used price” respectively (step 15). Not surprisingly, he quickly
found two more games (“Left 4 Dead” and “Dead Space”) that he
likes based on these two rules (step 15). These hidden rules are
learned from his preferences, and he can apply these rules for his
future game search.

5 EXPERT FEEDBACK

We collected feedback from five visualization experts (2 female, 3
male; 3 faculty, 2 graduate students) to assess some of our design
decisions and the usability of our prototype. We gave these partici-
pants (P1-P5) a tour of the prototype and asked them to think aloud
as they developed a cluster of countries3.

All of them started from the scatterplot, looking for outliers or
groups of interest. P4 tried different projection methods (MDS, t-
SNE, and UMAP) to explore the clustering and mentioned that the
projection was “extraordinarily helpful for [his] exploratory work.”
They all used the table to review data in detail. Perhaps thanks
to the fact that stalagmite lays out boxes representing individual
points right next to table rows, all but one of our experts found the
connection straightforward. In the remaining case (P5), the expert
was unclear on hierarchical clustering in general. P5’s difficulty is
instructive because we aim to target a broad audience with future
work (detailed in Sect. 7) and will develop ways to clarify HAC and
stalagmite to new users.

All participants used some of the interactions to change clus-
ters and found the drag-and-drop interactions for similar clusters
straightforward. The interactions for separating items (Split-cluster
and Change-node’s-cluster) were less obvious because they required
keystrokes of which participants needed reminders. Alternate inter-
actions, like a context menu, were suggested and we will use that
to improve future work. Overall, participants recognized that the
backend machine learning worked to change the groups based on
their feedback. One noted that it is not always clear exactly what
the effect was, referring to the fact that the model updates the en-
tire clustering, and items may not end up exactly where they were
placed. This is expected behavior, but that feedback points towards
interesting research in a hybrid clustering model with both metric
learning similarity constraints and must-cluster constraints across
varying levels of the hierarchy.

The rules were perhaps the most popular interface feature, includ-
ing the value range displays in the table columns, the attribute weight
bars for rule importance in the table columns, and the coloring in
stalagmite to show clusters where a selected attribute is important.
The column weights guided participants toward variables of interest
once they established a group of interest. The cluster coloring got a
unanimous appreciation for helping drill down, calling attention to
certain clusters, and seeing how the clustering was relying on certain
attributes.

6 EMPIRICAL MACHINE LEARNING EVALUATION

We need to ensure that our learning method is capable of producing
valuable subsets of interest for users with their limited interactions.
We assume the user is consistent but only able to provide a limited

3Data were attributes of countries thought to impact happiness [34].

number of metric learning constraints and wants to ensure they
get helpful results from a relatively small amount of effort. To
evaluate our model’s performance, we simulate users’ interactions,
and see how different interactions enhance the basic HAC model
by measuring how performance evolves as more constraints are
assigned. We apply our method to some common tabular data:
Ionosphere, Parkinsons, and Breast cancer [4].

6.1 Metrics of Success

We use two metrics to calculate model performance scores. To
measure the clustering quality, we compare the learned cluster labels
with ground truth labels in our linear match score. We match each
data point’s learned label with its ground truth label (clusters are
first re-numbered to align with labels) and count 1 point if they are
matched, otherwise, 0 points. A normalized score between 0.0 and
1.0 is derived by dividing by the total number of data points. During
the simulation, the learning algorithm does not get access to the
ground truth, but we use the labels to evaluate its performance.

Since the learning is based on metric learning (ITML [17]), we
evaluate the model’s quality by testing the accuracy of the distance
function at k-Nearest-Neighbor (kNN) classification with cross val-
idation. We compare the cross-validation score using the distance
function to the score without it (unweighted Euclidean distance).

6.2 Interaction Simulations

6.2.1 Constraint Assignment

Our technique assumes that users have sufficient domain knowledge
to provide valuable information about similarity and dissimilarity
relationships between groups, so we use ground truth cluster labels
to create constraint assignments in our simulations.

To perform Merge-nodes, we randomly pick one pair of data
points with different HAC labels that actually share the same ground
truth label. We then assign a must-link constraint to the pair and run
the metric learning. For Split-cluster, the pair of data points will be
two data points with different ground truth labels but with the same
HAC label. The constraint assigned will be a cannot-link constraint
accordingly.

Merge-clusters takes two groups of data. We select two groups
that share the same real cluster label while HAC assigns different
labels to some of their data points. Must-link constraints are assigned
to data points pairwise within the two groups.

For Change-node’s-cluster, two groups of data are needed as a
source group and a target group. In the source group, we randomly
pick one data point which has a different HAC label from the oth-
ers. Cannot-link constraints are assigned between it and the rest of
the source group’s data points. Must-link constraints are assigned
between it and the target group’s data points. Due to the different
sizes of the groups chosen, each Merge-clusters and Change-node’s-
cluster can have a variable number of constraints provided to the
model.

6.2.2 Experiment and Interpretation

We conduct experiments to evaluate four types of interactions indi-
vidually with sets of varying sizes. Mean scores are collected from
multiple runs. Results are shown in Fig. 5. Cross-validation scores
are used to measure how well the constraints passed into ITML are
helping it learn a distance function. Linear match scores are used
to measure the hierarchical clustering (HAC) accuracy based on the
learned cluster label. We observe steady improvement effects or
fast convergences for both the cross-validation scores and the linear
match scores after a small number, usually around 10, of interactions
on various data sets of different sizes. The results suggest that the
user can use the method to obtain a sufficient model with just an
affordable amount of effort.

(a) Parkinsons, merge-nodes & split-cluster (b) Ionosphere, merge-nodes & split-cluster (c) Breast Cancer, merge-nodes & split-cluster

(d) Parkinsons, merge-clusters & change-node’s-cluster (e) Ionosphere, merge-clusters & change-node’s-cluster (f) Breast Cancer, merge-clusters & change-node’s-cluster

Figure 5: Interaction Simulation Results

HAC Linear Match HAC + Merge-nodes Linear Match HAC + Split-cluster Linear Match
HAC + Merge-clusters Linear Match HAC + Change-node’s-cluster Linear Match

HAC Cross-validation HAC + Merge-nodes Cross-validation HAC + Split-cluster Cross-validation
HAC + Merge-clusters Cross-validation HAC + Change-node’s-cluster Cross-validation

7 FUTURE WORK

Based on the expert feedback, we can improve the interface com-
ponents to assist users’ exploration and interactions better. First,
we can get rid of some specific keyboard clicks for user interac-
tions. We will still keep “drag and drop” for interactions based on
the feedback. Besides that, we will apply a right click and show a
menu for the other interactions. Second, we can include analytic
provenance features so users can see and improve the feedback they
have already provided. After many iterations of tuning the machine
learning model, users might forget which data nodes or sub-clusters
they have interacted with, or change their mind about a relationship.
By retrieving previous interactions, users could better understand
how their previous interactions impacted the model, maximizing
the effectiveness of using the existing capabilities. Third, one of
our participants (P5) is unclear on hierarchical clustering in general
and had trouble understanding the structure of stalagmite. As a
novice of hierarchical clustering, P5 did not quickly see how the
sub-clusters at each level are connected. This might be because P5
did not have the background knowledge that hierarchical agglomer-
ative clustering works by merging clusters from the bottom. Since
we target a broader audience, we need to highlight the structure
of hierarchical clustering. For example, when users mouseover a
cluster or leaf node, its parent clusters will be highlighted. This will
help the non-expert users quickly get the concept and be able to
further explore.

In our experiments, we observed differences between the improve-
ments from must-link constraints versus cannot-link constraints,
with variation across datasets. We see a performance dip at a small
number of constraints, as shown with some experimental data sets

like ionosphere and breast cancer. This could be due to the instability
of the model at an early stage of the learning process. Though the
effect is unlikely to cause problems for users, as it happens with
small amounts of randomly selected data, investigating the cause of
this behavior could result in a refined understanding of how metric
learning adapts based on particular types of input.

8 CONCLUSION

In this work, we presented a technique for semantic, interactive
hierarchical clustering. We take advantage of the cluster substruc-
ture to create a rich set of interactions, facilitated by a compact
visualization of the hierarchy (stalagmite). The interactions can be
translated to metric learning constraints, which makes it possible
to incorporate user feedback in hierarchical clustering. We use a
prototype implementation to demonstrate the application to real data
in a usage scenario, and show that this technique can be effective
for customizing and comprehending groups. Experimental results
from simulations demonstrate the performance of the underlying
machine learning as applied to these interactions. Finally, the tech-
nique is further validated by expert feedback on the interface and
functionality.

REFERENCES

[1] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules
between sets of items in large databases. In Proceedings of the 1993
ACM SIGMOD international conference on Management of data, pages
207–216, 1993.

[2] S. Amershi, J. Fogarty, and D. Weld. Regroup: Interactive machine
learning for on-demand group creation in social networks. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 21–30. ACM, 2012.

[3] M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel. Visual classification:
an interactive approach to decision tree construction. In Proceedings
of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 392–396, 1999.

[4] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[5] E. Bair. Semi-supervised clustering methods. Wiley Interdisciplinary

Reviews: Computational Statistics, 5(5):349–361, 2013.
[6] A. C. Bart. Video games csv file, 2017. retrieved April 12 2021 from

https://corgis-edu.github.io/corgis/csv/video games/.
[7] S. Basu, S. M. Drucker, and H. Lu. Assisting Users with Clustering

Tasks by Combining Metric Learning and Classification. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages 394–400,
2010.

[8] E. T. Brown, A. Endert, and R. Chang. Human-machine-learner inter-
action: The best of both worlds. In Proceedings of the CHI Workshop
on Human Centred Machine Learning (HCML), 2016.

[9] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang. Dis-function:
Learning distance functions interactively. In Proceedings of the IEEE
Conference on Visual Analytics Science and Technology (VAST), pages
83–92. IEEE, 2012.

[10] P. Bruneau, P. Pinheiro, B. Broeksema, and B. Otjacques. Cluster
Sculptor, An Interactive Visual Clustering System. Neurocomputing,
150:627–644, 2015. Special Issue on Information Processing and
Machine Learning for Applications of Engineering Solving Complex
Machine Learning Problems with Ensemble Methods Visual Analytics
using Multidimensional Projections.

[11] F. Cao and E. T. Brown. Dril: Descriptive rules by interactive learning.
In 2020 IEEE Visualization Conference (VIS), pages 256–260. IEEE,
2020.

[12] M. Cavallo and C. Demiralp. Clustrophile 2: Guided Visual Clustering
Analysis. IEEE Transactions on Visualization and Computer Graphics,
25(1):267–276, 2019.

[13] J. Choo, H. Lee, J. Kihm, and H. Park. ivisclassifier: An interactive
visual analytics system for classification based on supervised dimension
reduction. In Visual Analytics Science and Technology (VAST), 2010
IEEE Symposium on, pages 27–34. IEEE, 2010.

[14] P. Clark and T. Niblett. The cn2 induction algorithm. Machine learning,
3(4):261–283, 1989.

[15] W. W. Cohen. Fast effective rule induction. In Machine learning
proceedings 1995, pages 115–123. Elsevier, 1995.

[16] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-theoretic
metric learning. In Proceedings of Twenty-Fourth International Con-
ference on Machine Learning (ICML), pages 209–216, 2007.

[17] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-
theoretic metric learning. In Proceedings of the 24th international
conference on Machine learning, pages 209–216, 2007.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal
Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

[19] M. Desjardins, J. MacGlashan, and J. Ferraioli. Interactive visual
clustering. In Proceedings of the Twelfth International Conference on
Intelligent User Interfaces, pages 361–364. ACM, 2007.

[20] A. Endert, P. Fiaux, and C. North. Semantic interaction for visual
text analytics. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 473–482. ACM, 2012.

[21] A. Endert, P. Fiaux, and C. North. Semantic interaction for visual
text analytics. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 473–482. ACM, 2012.

[22] A. Endert, W. Ribarsky, C. Turkay, B. Wong, I. Nabney, I. Dı́az Blanco,
and F. Rossi. The state of the art in integrating machine learning into
visual analytics. Computer Graphics Forum, 3 2017.

[23] J. Fogarty, D. Tan, A. Kapoor, and S. Winder. Cueflik: interactive con-
cept learning in image search. In Proceedings of the sigchi conference
on human factors in computing systems, pages 29–38. ACM, 2008.

[24] R. C. Holte. Very simple classification rules perform well on most
commonly used datasets. Machine learning, 11(1):63–90, 1993.

[25] E. Hoque and G. Carenini. Interactive topic hierarchy revision for ex-
ploring a collection of online conversations. Information Visualization,

18(3):318–338, 2019.
[26] M. John, C. Tominski, and H. Schumann. Visual and analytical ex-

tensions for the table lens. In Visualization and Data Analysis 2008,
volume 6809, page 680907. International Society for Optics and Pho-
tonics, 2008.

[27] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and
G. Melançon. Visual analytics: Definition, process, and challenges.
In Proceedings of the IEEE Conference on Information Visualization,
pages 154–175. Springer Berlin Heidelberg, 2008.

[28] J. B. Kruskal and J. M. Landwehr. Icicle plots: Better displays for
hierarchical clustering. The American Statistician, 37(2):162–168,
1983.

[29] S. Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.

[30] Z. Lu and T. K. Leen. Semi-supervised learning with penalized prob-
abilistic clustering. In Advances in neural information processing
systems, pages 849–856, 2004.

[31] J. MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley sym-
posium on mathematical statistics and probability, volume 1, pages
281–297. Oakland, CA, USA, 1967.

[32] E. Nam, Y. Han, K. Mueller, A. Zelenyuk, and D. Imre. ClusterSculptor:
A visual analytics tool for high-dimensional data. In Proceedings of the
IEEE Symposium on Visual Analytics Science and Technology (VAST),
pages 75–82. IEEE, 2007.

[33] E. J. Nam, Y. Han, K. Mueller, A. Zelenyuk, and D. Imre. Cluster-
Sculptor: A Visual Analytics Tool for High-Dimensional Data. In
Proceedings of the IEEE Symposium on Visual Analytics Science and
Technology, VAST ’07, page 75–82. IEEE Computer Society, 2007.

[34] S. D. S. Network. World happiness report, 2019. retrieved 13 DEC
2020 from https://www.kaggle.com/unsdsn/world-happiness.

[35] M. Okabe and S. Yamada. An interactive tool for human active learning
in constrained clustering. Journal of Emerging Technologies in Web
Intelligence, 3(1):20–27, 2011.

[36] R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[37] R. Rao and S. K. Card. The table lens: merging graphical and symbolic
representations in an interactive focus+ context visualization for tabular
information. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 318–322, 1994.

[38] L. Rokach and O. Maimon. Clustering methods. In Data mining and
knowledge discovery handbook, pages 321–352. Springer, 2005.

[39] Rulequest Research. Is see5/c5.0 better than c4.5?, February 2017. Re-
trieved from https://www.rulequest.com/see5-comparison.html August
24, 2020.

[40] Rulequest Research. Information on see5/c5.0, April 2019. Retrieved
from https://www.rulequest.com/see5-info.html August 24, 2020.

[41] D. Sacha, M. Sedlmair, L. Zhang, J. Lee, D. Weiskopf, S. North, and
D. A. Keim. Human-centered machine learning through interactive vi-
sualization: review and open challenges. In In Proceedings of European
Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN), 2016.

[42] P. Y. Simard, S. Amershi, D. M. Chickering, A. E. Pelton, S. Ghorashi,
C. Meek, G. Ramos, J. Suh, J. Verwey, M. Wang, et al. Machine
teaching: A new paradigm for building machine learning systems.
arXiv preprint arXiv:1707.06742, 2017.

[43] A. K. H. Tung. Rule-Based Classification, pages 1–4. Springer New
York, New York, NY, 2016.

[44] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, et al. Constrained
k-means clustering with background knowledge. 2001.

[45] J. Wenskovitch, M. Dowling, and C. North. With respect to what?
simultaneous interaction with dimension reduction and clustering pro-
jections. In Proceedings of the 25th International Conference on
Intelligent User Interfaces, pages 177–188, 2020.

[46] L. Yang and R. Jin. Distance metric learning: A comprehensive survey.
Michigan State Universiy, pages 1–51, 2006.

	Introduction
	Related Work
	Clustering and Interactive Clustering
	Rule Learning
	Related Interactive Visualizations

	Interactive Hierarchical Clustering for Sensemaking
	Flexible Interactions with Hierarchical Clustering
	Stalagmite Visualization
	Learning from Interactions
	Connecting Visualizations and Interactions

	The Prototype and Usage Scenario
	Prototype
	Usage Scenario

	Expert Feedback
	Empirical Machine Learning Evaluation
	Metrics of Success
	Interaction Simulations
	Constraint Assignment
	Experiment and Interpretation

	Future Work
	Conclusion

