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ABSTRACT

Semantic interaction techniques in visual analytics tools allow ana-
lysts to indirectly adjust model parameters by directly manipulating
the visual output of the models. Many existing tools that support
semantic interaction do so with a number of similar features, includ-
ing using a set of mathematical models that are composed within a
pipeline, having a semantic interaction be interpreted by an inverse
computation of one or more mathematical models, and using an
underlying bidirectional structure within the pipeline. We propose a
new visual analytics pipeline that captures these necessary features
of semantic interactions. To demonstrate how this pipeline can be
used, we represent existing visual analytics tools and their semantic
interactions within this pipeline. We also explore a series of new
visual analytics tools with semantic interaction to highlight how the
new pipeline can represent new research as well.

Index Terms: Human-centered computing—Visualization—
Visualization systems and tools; Human-centered computing—
Interaction design—Interaction design process and methods

1 INTRODUCTION

Semantic interaction is a powerful interaction methodology, allowing
analysts to explore and discover relationships in data [10]. Semantic
interaction exploits intuitive interactions to manipulate underlying
model-level parameters. Through semantic interactions such as the
direct manipulation of visualizations, visual analytics tools are able
to learn about the analyst’s reasoning process. This learning is ex-
pressed as alterations to the parameters of underlying mathematical
models, ultimately resulting in an updated visualization to reflect this
newly-learned information [13]. This coupling of machine learning
algorithms with the analyst’s knowledge and interactions allows for
the creation of robust analytics tools that collaboratively exploit the
skills of both human and computer.

For example, a number of semantic interaction tools and tech-
niques have been developed that make use of a visual “proxim-
ity ≈ similarity” metaphor to map observations1 into a visualiza-
tion [4, 12–14, 19, 25]. As analysts manipulate the observations in
these visualizations, they communicate a desired similarity between
a subset of observations, which in turn updates the underlying model
parameters that define the visualization. These interactions allow
an analyst to continue exploring and understanding relationships in
the data without pausing to manipulate model parameters manually.
This frees the analyst’s cognition to focus on high-level analysis
concepts rather than low-level parameter details [11]. As the analyst
continues to perform such semantic interactions, the tool learns more
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1In this work, we employ the convention of referring to individual data
items as observations and the properties of those observations as attributes.

about the analyst’s reasoning, and the visualization incrementally
adjusts to reflect the current data exploration [12].

Though a number of tools that use semantic interactions have
been developed, each is described in a distinct manner to highlight
the purpose for which the tool was built. Although there are more
generalized pipelines to describe the concepts behind such visual
analytics tools, such as the those proposed by Card et al. for informa-
tion visualization [6] and Keim et al. [16] for visual analytics tasks,
they do not incorporate sufficient focus on the interactions to fully
capture the power and complexity of semantic interaction. Thus,
it can be difficult to understand how semantic interactions affect
the underlying mathematical models and how these mathematical
models work together in a single tool.

To address this need for capturing the complexity involved in
semantic interactions for visual analytics tools, we begin by explor-
ing the characteristics of semantic interactions in such tools. With
these characteristics to guide us, we define a new pipeline that can
properly communicate how the visualization is created and how
semantic interactions are interpreted. We then demonstrate this new
pipeline’s capabilities by discussing the pipeline representations for
a set of existing tools as well as a selection of new visual analyt-
ics tools. Finally, we discuss other implications of using this new
pipeline, such as the ability to more thoroughly explore the design
space of semantic interaction or enable rapid prototyping, as well as
the limitations.

Specifically, we note the following contributions:
1. A review of the necessary components to accomplish semantic

interactions in visual analytics tools (i.e., model composability,
inverse computations, pipeline bidirectionality);

2. A new conceptual pipeline that incorporates the necessary
components of semantic interaction;

3. A set of examples demonstrating how this pipeline is capable
of capturing semantic interaction designs in both existing and
new visual analytics tools.

2 RELATED WORK

To fully capture the complexity of semantic interactions, our goal
in this work is to define a new conceptual pipeline that depicts the
structure of the feedback loop between the various data processing
components of the semantic interaction-enabled visual analytics
pipeline. We justify the need for such a pipeline by surveying the
current state of commonly-referenced pipeline models in information
visualization and visual analytics as well as exploring the breadth of
pipelines used to model existing visual analytics tools.

2.1 Existing Pipelines for Visual Analytics Processes
The fields of information visualization and visual analytics rely
on computational and visual pipelines to convert data into visual
displays. For example, Figure 12 (top) shows the Sensemaking Loop
defined by Pirolli et al. [23], which identifies the different mental
processes involved in transforming raw data into a presentation of
a formalized hypothesis. Located below the Sensemaking Loop in
this figure are both the information visualization pipeline of Card et
al. [6] and the visual analytics task process of Keim et al. [16].

These pipelines model a high-level representation of how raw
data is transformed to a final visualization or presentation and are

2Larger versions of all figures are provided in the supplementary material.



Figure 1: (top) In the Sensemaking Loop [23], sensemaking contains
a backward (or inverse) process for each forward step. Chaining
these combined forward/inverse processes as composable processes
yields a full bidirectional cognitive pipeline. (middle) The information
visualization pipeline presented by Card et al. [6] does not specifically
model semantic interactions. (bottom) The visual analytics model
provided by Keim et al. [16] provides a high-level overview of the
structure of visual analytics knowledge discovery, but lacks detail in
defining how mathematical models are used to interpret semantic
interactions. In order to support semantic interaction, a different
pipeline structure is necessary.

quite generalizable, but the resulting trade-off is that these pipelines
abstract any details of the mathematical model(s) and visualization(s)
into single nodes in the graph. For example, the emphasis on a high-
level abstraction on visual analytics task processes means that the
pipeline defined by Keim et al. does not explicitly discuss interaction.
Similarly, the focus on the mental processes in the Sensemaking
Loop means that mathematical models are not considered in this
pipeline. In contrast, the interactions described in the pipeline from
Card et al. represent methods to directly manipulate parameters
of mathematical models, such as slider interactions. While this is
interaction, we do not define this to be semantic interaction as no
interpretation is necessary by any model for this interaction; the
value provided by the analyst is simply stored and used. Thus, the
precise mechanisms used to process and visualize the data or to
interpret semantic interactions are not adequately captured in either
of these pipelines. Looking at other pipeline representations, such
as those presented in a survey of analytical pipelines by Wang et
al. [29], we find the same limitations for semantic interaction tool
design. Thus, these pipelines are insufficient for capturing how to

Figure 2: V2PI [19] is a mathematical representation of semantic
interaction. This framework supports the creation of a visualization
V . When the analyst U manipulates V to form V ′ via a semantic
interaction, this triggers a manipulation of the parameters θ that
influence model M. The parameterized feedback (Fp) represents an
inverse process similar to what is described by the Sensemaking
Loop, in which the interaction is interpreted as a set of updates to
model parameters.

support semantic interaction in visual analytics tools.
In contrast to these pipelines, V2PI [19] provides a statistical

semi-supervised machine-learning methodology for realizing seman-
tic interaction. The V2PI pipeline (Figure 2) supports interactivity
for visualizations and relies on both proven statistical methods and
the analyst’s judgment. In this pipeline, a visualization is created
by processing data and parameters through a mathematical model.
This visualization is presented to the analyst to evaluate. The analyst
can directly manipulate the visualization, referred to as cognitive
feedback. This cognitive feedback is translated into parameterized
feedback, typically via machine learning, which updates the model
through newly learned parameter values. As a result, a new visu-
alization is created based on the analyst’s interaction. Given this
definition of V2PI, we assert that V2PI appropriately captures the
basics of semantic interaction. However, V2PI only permits the
exploration of a single mathematical model to accomplish such in-
teractions. Thus, while V2PI may be able to capture simple visual
analytics tools which contain a single mathematical model, it is
not capable of representing tools with multiple models, such as
StarSPIRE [4].

2.2 Tool-Specific Pipelines

Semantic interaction tools have become increasingly varied in inter-
action methods and purpose. Here, we consider tools as implement-
ing semantic interaction if they meet three characteristics: (1) an-
alysts can directly manipulate visualization, (2) the tool interprets
the analyst’s intent from these interactions to update some learned
model (typically a semi-supervised machine learning algorithm),
and (3) the goal of these models and interactions is to enhance the
cognitive Sensemaking Loop [23].

To incorporate semantic interaction, some tools leverage the V2PI
framework previously discussed, including ForceSPIRE [12], Star-
SPIRE [4], and Andromeda [25]. In each of these tools, the analyst
directly interacts with observations in a dimension-reduced projec-
tion of data. These interactions drive a model that learns the relative
importance of the attributes in the high-dimensional data space.

Additional tools also support interacting with a projection, but
were not explicitly created with the V2PI framework in mind. Ex-
amples include the LAMP framework described by Joia et al. [15]
and the extention to iLAMP [7], the technique described by Mamani
et al. [20], Dis-Function [5], the technique defined by Paulovich et
al. [22], and the tool developed by Molchanov et al. [21]. However,
semantic interaction can extend beyond interactions with projected
observations to learn attribute weights. For example, both Inter-
Axis [17] and AxiSketcher [18] use interactions on observations in
the projection to update the axes of the projection. Intent Radar [24]



Figure 3: A representation of our three characteristics for a new
semantic interaction pipeline: Model Composability, Bidirectionality,
and Model Inversion. Model Composability refers to how different
mathematical models must work together to produce the desired
visualization. Bidirectionality allows interactions to drive updates to
the underlying models. Model Inversion refers to the pairs of a forward
computation with an inverse computation. The inverse computation
supports the translation of semantic interactions into manipulations of
model parameters.

introduces interactive intent modeling, allowing an analyst to pro-
vide feedback by dragging or clicking keywords, increasing the
relevance by moving the keyword closer to the center or decreasing
it by moving it outward in the radar interface. Moving away from
projection-based tools entirely, Podium [28] is a tabular ranking
tool in which an analyst reorders rows (still observations) in the
table while the tool learns the attributes important to the current
ranking scheme. iCluster [9] provides analysts with the ability to
interactively move documents into clusters, learning the attributes
important to the current clustering scheme. Similarly, ReGroup [1]
interactively learns a model of group membership as an analyst adds
members to groups.

Although each of these tools employ semantic interaction, few
of the papers offer associated pipelines to properly capture the com-
plexity involved with the interaction. Moreover, the pipeline rep-
resentations are diverse, ranging from high-level abstractions to
more detail-oriented representations. In Figure 5, we show a subset
of these pipeline representations, including Andromeda [26], Star-
SPIRE [4], Dis-Function [5], Piecewise Laplacian Projection [22],
and the pipeline provided by Mamani et al. [20] to describe their
technique. Although the pipelines for Andromeda and StarSPIRE
arguably achieve the highest level of detail to capture the semantic
interaction therein, we feel that these pipelines can be improved
to focus even more on the mathematical models used to create the
visualization and interpret the semantic interactions therein (which
is further explained in Section 5). In contrast, the pipelines for
Dis-Function, Piecewise Laplacian Projection, and the technique by
Mamani et al. are high-level pipelines which focus on the general
concepts behind how the associated tools and techniques work. The
trade-off in these, just as with the pipelines by Card et al. and Keim
et al., is that the mathematical models used are abstracted away, mak-
ing it difficult to determine how the semantic interactions therein are
accomplished.

3 CHARACTERISTICS OF SEMANTIC INTERACTION IN VI-
SUAL ANALYTICS TOOLS

When comparing the characteristics of the visual analytics tools
discussed in the previous section, we note that there are several
commonalities. Combined with the ideas from the Sensemaking
Loop [23], we define three properties as necessary for supporting
semantic interaction in visual analytics tools. Each of these proper-
ties map directly to structures required to represent the complexity
involved in modeling semantic interactions in a generalized pipeline
for visual analytics tools.

3.1 Model Composability

The first characteristic we identified is that each mathematical model
used to process the data as it works its way to the final visualization
has specific input and output requirements. This hints to how these
mathematical models must be composed to work together within the
pipeline in order to produce the desired visualization. For example,
PCA requires numerical high-dimensional data as input to produce
low-dimensional coordinates as output. Therefore, any models pre-
ceding PCA must produce these high-dimensional data, and any
models after PCA must be able to work with the low-dimensional co-
ordinates as input. As another example, Weighted Multidimensional
Scaling (WMDS) accepts numerical high-dimensional data as well
as a set of attribute weights as input to produce low-dimensional
coordinates as output. Thus, while the output is the same as with
PCA, the input requirements have changed. This change must be
accounted for in either data preprocessing steps or in a mathematical
model that precedes the WMDS model. Therefore, model compos-
ability is a fundamental characteristic of semantic interaction and is
represented by the top row of Figure 3.

3.2 Forward and Inverse Computations

While the model composability characteristic may seem simple or
intuitive, it has important implications for the structure of a pipeline
that captures semantic interaction. For example, Andromeda [26]
uses WMDS (Weighted Multi-Dimensional Scaling) to produce low-
dimensional coordinates given a set of attribute weights. However,
observation-level interaction, or OLI (which is a type of semantic
interaction), expands the WMDS model by providing new low-
dimensional coordinates from which to learn a new set of attribute
weights. Given that the dataset is treated as a constant, this effec-
tively inverts the WMDS computation.

We find this type of computation inversion common in tools with
semantic interaction [4, 5, 8, 20, 22, 26, 31]; it is this inversion which
defines the learning or interpretation necessary to realize semantic
interaction. Therefore, we propose that computation inversion is a re-
quired characteristic for visual analytics tools that support semantic
interaction. Thus, our new pipeline must capture both forward and
inverse computations for a given model. This concept is represented
by the bottom right of Figure 3. Combined with the aforementioned
model composability, this means that each mathematical model must
fulfill composability requirements for its inverse computation as
well as its forward computation.

3.3 Looping Sensemaking via Bidirectionality

Taking the model composability and forward and inverse require-
ments a step further begins to imply a required bidirectionality in
how the models are used together. In other words, each model
must fulfill composability requirements for both its forward and
inverse computations. Combine this with the fact that the forward
computations help produce the given visualization and the inverse
computations help interpret an interaction, then the pipeline must be
bidirectional to support a looping structure. This bidirectional struc-
ture can be seen in both StarSPIRE [4] and Andromeda [26], which
each use inverse computations of their models to interpret seman-
tic interactions, followed by the forward computations to generate
updated visualizations.

Referring back to the Sensemaking Loop [23], we see a similar
structure between pairs of processes that allow for information to
be progressively transformed. These pairs of processes allow the
transformation to occur in both forward and inverse directions, im-
plying that there is a concept of looping between these collections of
information. Thus, bidirectionality in a pipeline to represent seman-
tic interaction mimics this natural process of incrementally building
information to generate an output and then reassessing and refining
information to produce a better output. This approach captures the



concept of incremental formalism [2, 3, 27] in the cognitive sense-
making processes, in which analysts incrementally improve their
mental models of the data through interaction, and represents that
cognitive process formally as a machine learning process.

However, the Sensemaking Loop as well as existing semantic
interaction tools [8, 20, 22, 26, 31] also indicate that it is not always
necessary to iterate through the entire pipeline and all models to
generate the desired results. As an example, Andromeda [26] uses
the aformentioned semantic interaction of OLI. When this occurs,
an inverse computation is triggered that determines new attribute
weights given a set of low-dimensional coordinates. However, since
all the observations are already visualized, there is no need to pull
any additional data into the pipeline. Thus, there is no need for any
new data processing, meaning processing can skip to immediately
recalculating new low-dimensional coordinates for all observations
using the learned attribute weights. In the Sensemaking Loop, a
similar concept is represented by the fact that the analyst does not
have to go all the way back to the external data sources every time
he/she wishes to refine information. For instance, an analyst refining
an evidence file may only need to reread or perhaps read more
of a file that has already been accessed rather than foraging for a
completely new file.

These examples reveal an important feature with respect to this
bidirectionality characteristic: the ability to short circuit the rest
of the pipeline when appropriate. This is a key new feature of a
multi-model pipeline not found in earlier definitions [4]. Short cir-
cuiting happens when the inverse computation of a model does not
need to send the interaction any further down the pipeline. Thus,
instead of running the entire pipeline, we can short circuit to skip
over unnecessary components of the pipeline, executing the forward
computations beginning with the last model used to perform an in-
verse computation. From there, other models that were also updated
should also have their forward computations rerun to produce an
updated visualization. While the bidirectionality chatacteristic is
represented in the lower-left of Figure 3, this short circuiting concept
is depicted by the upward arrow between the inverse computation
and the forward computation in the lower-right of Figure 3.

4 COMPONENTS OF A SEMANTIC INTERACTION PIPELINE
FOR VISUAL ANALYTICS TOOLS

4.1 A New Semantic Interaction Pipeline
When evaluating traditional visual analytics models (e.g., Keim et
al. [16]), we note that there is rarely a distinction between different
models that may be used in the pipeline. Thus, model composability
is not well-represented in these existing models. Furthermore, while
bidirectionality may be represented on some level, the manner in
which the visual analytics pipeline handles this bidirectionality is
not discussed or represented in detail. Additionally, there is no
representation of inverse computations within the models. Therefore,
there is a need for a new pipeline for visual analytics tools that better
captures these characteristics of semantic interaction.

For our proposed new pipeline, we require properties of the
pipeline to map back to the model composability, model inversion,
and bidirectionality characteristics discussed previously. To capture
these characteristics, we define this new pipeline to consist of three
components, which are further described in the following subsec-
tions: a Data Controller, a set of Models, and the Visualization3.
This new pipeline is shown in Figure 4. The forward and inverse
computation characteristic is addressed by having each Model repre-
sent a set of such computations. Arrows between Models and other
pipeline components indicate how the input and outputs require-
ments for each component line up4, thereby addressing the model

3To differentiate common terms (e.g., a mathematical model) from
pipeline components, we capitalize pipeline components (e.g., Model).

4As shown in the SIRIUS pipeline in Section 6.2, it is certainly possible

composability characteristic. The bidirectionality of the overall
pipeline is handled through transitions between these computations,
using the forward computations in the projection direction and the
inverse computations in the interaction direction to loop through
the pipeline in response to a semantic interaction. Upward arrows
between inverse computations and forward computations of a given
Model show when the pipeline short-circuits rather than iterating
through the entire pipeline to interpret a semantic interaction. Thus,
this proposed structure accurately captures the power and complexity
of semantic interactions.

4.2 Models
As evident by our discussion thus far, the primary focal point of
our proposed pipeline is the Models. This is because the Models
alone must encompass two of the three identified characteristics of
semantic interaction: model composability and model inversion. To
capture the inversion characteristic, each Model consists of a set of
computations: a forward computation that is used to help produce
the desired Visualization and at least one inverse computation that
is used to help interpret an interaction by updating the inputs to
the forward computation. These inverse computations can come in
many forms, including precise mathematical inverses [25], heuristic
inverses [31], and probabilistic inverses [14].

The forward and inverse computations of the Model naturally
have input and output requirements, hinting at the given Model’s
composability with other pipeline components, whether they be
other Models in the pipeline, the Data Controller, or the Visual-
ization itself. These input and output requirements and how they
are addressed is implied by how the Model connects to these other
components in the pipeline. In Figure 4, this connectivity between a
given Model and other pipeline components is represented by the
arrows between these pipeline components. These arrows therefore
represent the process used to both create the desired Visualization
and interpret interactions within the Visualization. However, it is
important to note that while these arrows provide an overview of
how each Model is composed within the pipeline, the specific details
of how composability requirements are met are left to the corre-
sponding text accompanying the pipeline. To help provide more
details for these composability requirements through the pipeline
itself, the pipeline can be further annotated. For example, the ar-
rows throughout the pipeline can be annotated with mathematical
variables used to represent the inputs and outputs of each pipeline
component. The trade-off in doing so is that such annotations may
lead to visual clutter or initial confusion as to what these annotations
mean.

Since these arrows represent the processes of Visualization pro-
duction and interaction interpretation, we begin to note how the bidi-
rectionality requirement is also addressed through this new pipeline.
That is, there are a set of arrows that flow through each Model in
the pipeline in a forward direction to produce the given Visualiza-
tion as well as a set of arrows that flow in a backwards direction to
interpret interactions within the Visualization. Thus, the manner in
which the Models are represented in the pipeline alongside the other
pipeline components denotes the pipeline’s bidirectionality, thereby
capturing this final characteristic of semantic interaction.

However, there is an additional nuance of bidirectionality that
is also captured within each Model: being able to short-circuit the
pipeline when no further computation is needed to interpret the given
interaction. This is represented by an arrow between the inverse
computation of a Model and its forward computation. Referring
to our previous example with Andromeda, OLI does not need to
communicate with any other pipeline component. Therefore, there is
no need to send this interaction further down the pipeline, allowing
the Model to short-ciruit. This immediately triggers a recalculation

to create non-linear pipelines that model how subsets of models collaborate
to handle different groups of semantic interactions.



Figure 4: Our new pipeline for semantic interaction in visual analytics tools, created from the combination of the three characteristics shown in
Figure 3. Model composability is shown through the chaining of a series of models horizontally in the pipeline. Bidirectionality results from the
separated forward (top) and inverse (bottom) paths through the models. Model inversion is shown through the pairing of a forward computation
and an inverse computation in each of the models. This representation also shows short circuiting arrows that connect the inverse and forward
computations in the Models. The resulting structure captures how data is transformed into a Visualization and how semantic interactions are
interpreted to update the parameters of the forward computations of the different Models.

of the low-dimensional coordinates of the data using the newly
calculated attribute weights, enabling the Visualization to update as
soon as possible.

4.3 Data Controller
Which Models are supported in a pipeline is highly dependent on
the data being used. Therefore, to better contextualize the Models in
the pipeline, our pipeline necessitates a Data Controller to serve as
the main access point to the underlying data that is being visualized.
Its key purpose is to retrieve the raw data and any possible metadata
as well as to transform this data into a form usable to the Models
through data preprocessing. Thus, the Data Controller can enable
analysts to view the raw data directly or allow the pipeline to pull
additional data to process and visualize. This means that a Data
Controller is specific to a particular type of data or dataset.

4.4 Visualization
Finally, it is difficult to understand or appreciate a Model without un-
derstanding the Visualization being used and the interactions enabled
therein. Therefore, our new pipeline also requires a Visualization
component. Firstly, the Visualization must define how the output
from the Models are mapped to different visual elements in the Vi-
sualization. Additionally, this pipeline component determines how
the visual elements are interacted with and which Model(s) should
be used to interpret this interaciton. Thus, an interaction within the
Visualization initiates inverse computations in the Models of the
pipeline to interpret the given interaction and produce an updated
Visualization.

5 USING THE PIPELINE FOR EXISTING VA TOOLS

With this pipeline structure, we have the ability to well describe
the complexity of semantic interaction in existing visual analytics
tools. To exemplify this, we focus on the five of the visual analytics
tools and techniques we described in Section 2.2. Figure 5 shows a
side-by-side comparison of the pipelines provided in the perspective
papers for each tool or technique and how to represent each using
our newly proposed pipeline. From A to E in Figure 5:

Andromeda [26] provides a scatterplot projection of numerical
high-dimensional data using Weighted Multidimensional Scaling
(WMDS). In this projection, the analyst can perform a semantic
interaction called Observation-Level Interaction (or OLI) in which
he/she provides new low-dimensional coordinates for a subset of
the observations. From these observations, new attribute weights
are learned, which are then used to update the low-dimensional
coordinates of all the observations. Both these interactions manipu-
late the parameters for the WMDS mathematical model. Therefore,
three pipeline components are needed to represent Andromeda using
our new pipeline: a CSV Data Controller, a WMDS Model, and

the Visualization. The CSV Data Controller reads in a specified
CSV file of numerical high-dimensional data and normalizes each
attribute using z-scores. It also initializes each attribute weight to
be 1/p, where p is the number of attributes in the dataset. Using
this normalized data and attribute weights, the forward computation
of the WMDS Model determines the low-dimensional coordinates
for each observation. The Visualization component displays the
low-dimensional coordinates and the attribute weight values. The
inverse computation then determines new attribute weights based on
the analyst-defined low-dimensional coordinates. At this point, the
pipeline always short-circuits to run the forward computation and de-
termine (and then display in the Visualization) new low-dimensional
coordinates for all observations; the CSV Data Controller is never
needed beyond the data preprocessing steps since all observations
are always displayed, meaning no further computation from the Data
Controller is needed.

StarSPIRE [4] provides a scatterplot-like projection for queried
text data. Thus, the analyst must perform a query and perform sub-
sequent queries or interactions in order to pull documents into the
visualization. To represent this process in our new pipeline, four
pipeline components are needed: a Text Data Controller, a Rele-
vance Model, a Force-Directed Model, and a Visualization. The
Text Data Controller initializes a set of extracted entities from the
document set and ensures each document has an associated TF-IDF
value for every entity. After providing references to the locations of
the documents themselves and an initialized set of entity weights,
1/p, the forward computation of the Relevance Model computes the
relevance of all documents according to the current entity weights.
Only the top n documents above a given threshold will be added to
the visualization. Thus, the Relevance Model acts as a query filter
for which documents are passed to the Force-Directed Model. The
forward computation of the Force-Directed Model determines the
low-dimensional coordinates of each document passed to it, using
the same entity weights to place similar documents near each other.
The Visualization then uses both the low-dimensional coordinates
and the relevance (mapped to node sizes) to display the documents.
Semantic interactions in StarSPIRE can cause the Force-Directed
Model and the Relevance Model to learn new entity weights in
their inverse computations. Thus, when the analyst manipulates
the document positions or relevances, new entity weights represent-
ing the analyst’s interest are learned and then used in the forward
computation to update the visualization accordingly.

Dis-Function [5] displays, among other views, a scatterplot of
projected pairwise distances using Principal Component Analysis
(PCA). An analyst is able to perform semantic interactions by pro-
viding new low-dimensional coordinates for observations, causing
the tool to learn new attribute weights for PCA and reprojecting the
observations using these new weights. This behavior is quite similar



Figure 5: Using the proposed semantic interaction pipeline shown in Figure 4, we can now model the behavior of existing semantic interaction
tools like (A) Andromeda [26], (B) StarSPIRE [4], and (C) Dis-Function [5], (D) Piecewise Laplacian Projection [22], and (E) Mamani et al. [20]).

to Andromeda, thereby using a PCA Model in place of Andromeda’s
WMDS Model in its pipeline.

Paulovich et al. [22] present a Piecewise Laplacian projection
tool in which samples are drawn from a full dataset, control points
are created for each sample, and a neighborhood graph is constructed
for the full dataset. As an analyst manipulates the projection through
semantic interactions, these control points and neighborhood graphs
dynamically update. Using our new pipeline, we can model this
process using a Sampling Model to perform the sampling step and a
Neighborhood Graph Model to perform the projection. In the Sam-
pling Model, the forward computation performs the initial sampling
step, which then feeds into the forward computation of the Neighbor-
hood Graph Model to specify the control points and project the data.
Semantic interactions can be performed by directly manipulating
the projection, causing the Neighborhood Graph Model to learn a
new projection through its inverse computation and short-circuiting
to rerun its forward computation. Since there is no semantic interac-
tion defined that alters the Sampling Model, this model effectively
has no inverse computation defined, highlighting the possibility for
additional semantic interactions to be included in this type of tool.

Mamani et al. [20] propose a tool similar to that of Paulovich et
al., though the projection is based on local affine mappings rather
than Laplacian. Still, the basic process of sample first and project
second remains the same in the forward computations. This means
that the pipeline representation of this tool uses a Local Affine Force
Scheme Model in place of the Neighborhood Graph Model described
above. However, the process of responding to semantic interaction
also incorporates the inclusion of a new set of samples, thereby
incorporating an inverse computation in both the Local Affine Force
Scheme Model and the Random Sampling Model.

6 USING THE PIPELINE FOR NEW VISUAL ANALYTICS
TOOLS

In this section, we illustrate three visual analytics prototypes that
have been developed using our new visual analytics pipeline to
further explore the design space for semantic interaction. These
prototypes handle different types of data (numerical and text) and
alter similar Models to create distinct Visualizations and semantic
interactions therein. Each of the prototypes are discussed in the

following format:

• Motivation: We begin by motivating the creation of the proto-
type, describing why such a tool is useful and what we could
learn from it.

• Visualization and Semantic Interactions: We describe the
Visualization developed and the semantic interactions enabled
therein to provide context for the various pipeline components.

• Pipeline: We discuss how the given Visualization and seman-
tic interactions are accomplished mathematically through our
new visual analytics pipeline. Since we define the Visualiza-
tion previously, we effectively separate the discussion of this
pipeline component from the others to improve clarity.

6.1 Cosmos
6.1.1 Motivation
The Cosmos pipeline was created to explore how to incorporate
the Relevance Model from StarSPIRE [4] with a stricter notion of
similarity than a force-directed layout, such as is accomplished in
Andromeda’s WMDS Model [26]. With these two models, analysts
can query for specific terms or documents in the dataset, view the
raw text from a document, manipulate a document’s relevance, and
directly manipulate the projection of the documents.

6.1.2 Visualization and Semantic Interactions
As shown at the bottom of Figure 6, the Cosmos Visualization
consists of two panels. While the left panel is an interactive WMDS
projection of the documents, the right panel displays the details
for a single selected document. Unlike in Andromeda, the WMDS
projection is initially empty, requiring the analyst to perform a
search to bring documents into the Visualization. After documents
are placed on the screen, their relevance calculations are mapped to
the sizes of the projected observations. The analyst can then use an
array of interactions to manipulate the Visualization. For example,
double-clicking an observation populates the panel to the right of this
projection with information specific to the corresponding document.
This includes an interactive relevance slider, the label of the projected
observation, and the raw text of a document and associated notes.
The analyst also has the ability to remove a document from the
Visualization by clicking a button on this panel.



Figure 6: (top) Our pipeline representation of Cosmos consists of
a Text Data Controller, Relevance Model, WMDS Model, and a Vi-
sualization. The Relevance and Similarity models each handle a
different component of manipulating the data to create the Visualiza-
tion. (bottom) The Cosmos interface allows analysts to interact with
documents, manipulating their similarity and relevance throughout the
exploration of the dataset.

As in Andromeda, the analyst can perform the semantic inter-
action of OLI in Cosmos by clicking and dragging documents
of interest in specific locations (to denote their desired similar-
ity/dissimilarity) and clicking an “Update Layout” button. This
triggers a recalcualtion of attribute weights using only the low-
dimensional observations the analyst interacted with. However,
Andromeda stops there and reprojects the entire dataset to create a
new Visualization; Cosmos continues its interpretation of this inter-
action by automatically performing a query for more documents on
behalf of the analyst, guided by these new attribute weights. After
combining the new documents with the old documents, the rele-
vance of each document is recalculated, and the data is reprojected
to genereate a new Visualization.

In addition to OLI, Cosmos affords an additional semantic in-
teractions through its “Relevance” slider. This slider is available
for a selected document, as seen in the details panel at the bottom
of Figure 6. When this slider is manipulated by the analyst, the
new attribute weights are calculated which best estimate the analyst-
defined relevance for the given document. If the relevance for the
document is increased, then this interaction is interpreted as reflect-
ing a document that the analysts likes and would want to see more
of. Therefore, this interaction also triggers an automatic query for
more documents, which uses these new attribute weights. Otherwise,
the pipeline simply continues its process by recalculating all doc-
ument relevancies and reprojecting all documents to create a new
Visualization.

6.1.3 Pipeline
The Cosmos pipeline is shown at the top of Figure 6. Note that
this pipeline is similar to the StarSPIRE pipeline. In addition to the
replacing the Display Similarity Model with the WMDS Model, we
have modified the Data Controller and Visualization as well. Each
component of this pipeline is described below:

Text Data Controller: For this pipeline, we modified the Data
Controller from Andromeda to work with text documents. To do
so, we first assume that the uploaded CSV file contains the TF-IDF
values for entities extracted from the document set. This assumption
allows us to skip additional preprocessing steps to focus instead on
the Models themselves and their influence on the Visualization.

Once uploaded, this Text Data Controller reads the data from

the CSV file and preprocesses the data in the same manner as An-
dromeda’s Data Controller to ensure each entity is treated equally
by the Models. This is accomplished by normalizing each entity’s
TF-IDF values to be within a standard deviation of 1. Additionally,
this Text Data Controller adds references to the flat files for each
document, which are assumed to be in a single directory.

The final role of the Text Data Controller is to initialize a set of
entity weights for the Relevance Model and Similarity Model to
use, thus fulfilling the composability requirements for the forward
computations in these Models. We initialize these weights to be 1/p,
where p is the number of extracted entities in the uploaded CSV file.
These weights, along with the other document-related data, are sent
along the pipeline to the Models.

Relevance Model: We drew inspiration from StarSPIRE [4] to
create our Relevance Model. The Relevance Model uses the same set
of attribute weights that the WMDS Model does (which is described
next), but in a different manner. In the forward computation, this
model computes the relevance of a document given a set of attribute
weights as a linear combination of those weights and the document’s
TF-IDF values. This simple relevance calculation combined with a
threshold determines which documents are passed on to the WMDS
Model. That is, the Relevance Model acts as a filter that determines
which documents are visualized. The forward computation has a
matching inverse computation to calculate the entity weights that
produce a relevance value for a given document.

Additionally, the Relevance Model is responsible for querying
for new documents to display, whether the query was initiated by
the analyst by searching for a term or automatically by the Cosmos
itself (e.g., on OLI or increasing a document’s relevance). Using the
entity weights, the Relevance Model finds the top n most relevant
documents that are above the relevance threshold. This ensures that
only highly relevant documents are displayed while also guarantee-
ing that the analyst will not be overwhelmed by too many documents
appearing in the Visualization at once. If querying is not necessary
to interpret the given interaction (e.g., when the relevance value for
a document is decreased), then the Relevance Model simply short
circuits, allowing for immediate recalculation of the relevances of
all documents currently being displayed.

WMDS Model: The role of the WMDS Model is to spatial-
ize documents according to their similarity based on a given set
of attribute weights, just as is accomplished in Andromeda [26].
However, Cosmos relies on data passed from the Relevance Model
to define which documents should be used as well as the entity
weights. The forward computation uses these weights to project the
high-dimensional data in the Visualization.

The WMDS Model also uses the same inverse computation de-
fined by Andromeda, enabling OLI interactions. This calculates the
entity weights based on low-dimensional coordinates of documents
in the Visualization. However, Cosmos also performs an automatic
query based on these new entity weights. Since this automatic query
always occurs after OLI and because the Relevance Model is re-
sponsible for such querying, the WMDS Model never short-circuits.
After the Relevance Model also recalculates document relevances,
the WMDS forward computation is then run to determine new low-
dimensional coordinates for all documents to be displayed in the
Visualization.

6.2 SIRIUS
6.2.1 Motivation
In the primary SIRIUS paper [8], we noted that analysts often think
about the observations and attributes in similar manners. In other
words, there is a symmetry between how analysts analyze attributes
and observations of a dataset. Therefore, there is a need to develop
visual analytics tools that afford this symmetric thought process,
leading us to develop SIRIUS (Symmetric Interactive Representa-
tions In a Unified System). While further details of SIRIUS are



Figure 7: (top) Our pipeline representation of how SIRIUS produces
the observation and attribute WMDS projections and how this tool in-
terprets semantic interactions therein using our new proposed pipeline.
This is accomplished using a CSV Data Controller, Importance Model,
two WMDS Models, and a Visualization. (bottom) This Visualization
consists of two interconnected, interactive WMDS projections: one
for the observations and one for the attributes of a high-dimensional
dataset.

described in [8], we focus on its pipeline representation here.

6.2.2 Visualization and Semantic Interactions
The SIRIUS Visualization in Figure 7 consists of two main panels:
a left panel for a projection of the observations and a right panel
for the projection of the attributes. Both projections are WMDS
projections, with node sizes and opacities reflecting the importance
of the given observation or attribute. Both of these panels enable the
same semantic interaction of OLI previously described. However,
instead of only updating one projection, this semantic interaction
updates both projections in SIRIUS.

Below these two main panels is a third panel that provides an
interactive “Importance” slider that allows the analyst to define the
importance of a selected observation or attribute. The associated raw
data is also provided in the text field in this panel for the analyst’s
convenience. Manipulation of this “Importance” slider is a semantic
interaction that triggers a recalculation of attribute weights and
observation weights, thereby resulting in updates to both projections
in SIRIUS.

6.2.3 Pipeline
CSV Data Controller: The Data Controller used in SIRIUS is virtu-
ally the same as the one used in Andromeda. The main difference is
that the Data Controller in SIRIUS must normalize both the original
data as well as its transpose separately. This enables the projections
to represent all observations and attributes without an artificial em-
phasis placed on any one attribute or observation due to naturally
higher values (e.g., height vs weight of a person).

Importance Model: We again drew inspiration from Star-
SPIRE’s Relevance Model as it provides a simple method for the
forward computation to calculate the importance (i.e., relevance)

for any one observation or attribute using a linear combination of
attribute or observation weights and the associated data for the given
observation or attribute (respectively). However, these calculations
also make it easy to translate the importance of attributes to the
importance of observations and vice versa by expanding the impor-
tance calculation for a single observation or attribute to calculate
the importance of all observations or all attributes at once. Thus,
these importance calculations enable a recalculation of observation
weights based on entity weights and vice versa. Since the WMDS
Models (discussed next) use the same set of weights, this means
that both projections update based on a single interaction in either
projection.

To enable semantic interactions, the Importance Model’s inverse
computations begin when the analyst manipulates the “Importance”
slider. This triggers an inverse calculation of the weights that pro-
duce the analyst-defined “importance” value using equations similar
to those used in the Relevance Model’s inverse computation from
Cosmos. For example, if the analyst manipulates the “importance”
value for an attribute, then the observation weights to produce that
“importance” value are calculated using one of these inverse com-
putations. However, these new weights are then used to determine
new attribute weights. To enable more insights for attribute similar-
ities/correlations, these attribute weights from the inverse compu-
tation are then used to recalculate new observation weights in the
forward computation. These final sets of weights are then used in
the WMDS Models to reproject the data in the Visualization.

The Importance Model performs a similar set of calculations on
OLI. For example, if OLI is performed in the observation panel,
then a new set of attribute weights are determined in the WMDS
Model. However, to translate this change to changes in the attribute
projection as well, new observation weights must be determined. As
a result, both new sets of weights are passed to the WMDS Models
to determine the new positions of the nodes in both panels.

It is important to note that just as with Andromeda, SIRIUS
assumes that all observations and attributes are used from the begin-
ning. Since no querying for new data is performed, SIRIUS never
needs to communicate with the CSV Data Controller again, causing
the Importance Model to always short-circuit.

WMDS Models: As seen in Figure 7, SIRIUS consists of two
WMDS Models: one for the projection of observations and one
for the projection of attributes. The Observation WMDS Model
uses the normalized form of the original dataset and the same at-
tribute weights used by the Relevance Model to determine the low-
dimensional coordinates for each observation using the same WMDS
equation from Andromeda and Cosmos. Similarly, the Attribute
WMDS Model uses the normalized form of the transposed dataset
and the same observation weights used by the Relevance Model to
determine the low-dimensional coordinates for each attribute.

Each of these WMDS Models enable OLI separately. That is,
OLI can only be performed on one panel at a time. Then, an inverse
WMDS computation similar to the computation described in [26]
is used to calculate a new set of weights. These weights are then
passed to the Relevance Model to enable updates in both panels.

6.3 A Cluster-Based Visualization
6.3.1 Motivation
We have also begun investigating how the introduction of explicit
clustering assignments affect the ways in which analysts perceive
and interact with projections [31]. The technique itself can make use
of a variety of layout and clustering techniques, but the following im-
plementation describes an instantiation using a force-directed layout
for similarity projection and k-means clustering on the projection to
automatically group similar observations. Analysts directly interact
with the projection using semantic interactions to alter clustering as-
signments of the observations in order to manipulate the underlying
mathematical models.



Figure 8: (top) Our pipeline representation for how the cluster-based
visualization by Wenskovitch and North is created and semantic in-
teractions therein are interpreted. This is accomplished using a CSV
Data Controller, Dissimilarity Model, Force-Directed Model, k-Means
Model, and Visualization. (bottom) The clustering interface allows
analysts to explore related groups of observations depending on the
learned attribute weights.

6.3.2 Visualization and Semantic Interactions
The Visualization for this tool (bottom of Figure 8) simply consists
of a large projection space accompanied by a column of attribute
weights. Individual observations are still rendered as labeled nodes
in the display, but are grouped by saturated convex hulls. The dis-
tance between pairs of observations is a weighted dissimilarity com-
putation, in which the resting length of each link corresponds to the
difference between the observation endpoints across all attributes.

Once again, analysts can perform OLI interactions on the ob-
servations. However, these semantic interactions only affect the
mathematical models when an observation has been reclassified into
a new cluster (i.e., manipulating the distance between observations
within a cluster has no effect on the learned weights). When an
analyst adds an observation to a cluster or removes an observation
from a cluster (or both), the attribute weights are recalculated based
on a dissimilarity measurement between the relocated observation
and the centroid(s) of the involved cluster(s). After this computa-
tion, the resting length of each link is recalculated based on the new
attribute weights. As a result, additional observations may reclassify
themselves as the force-directed layout repositions the observations
in the projection.

6.3.3 Pipeline
CSV Data Controller: The Data Controller used in this tool is
identical to that used in Andromeda: numerical high-dimensional
data is simply read in from a CSV file and normalized, and attributes
weights are initialized to equal values.

Dissimilarity Model: The forward computation of the Dissimi-
larity Model computes a distance between each pair of observations,
taking into account both the differences between the attributes values

and the weights that have been learned for those attributes. This
dissimilarity matrix is then passed to the Layout Model to be ren-
dered. The inverse computation aims to understand why the analyst
decided that this observation does not belong to its original assigned
cluster and/or better belongs to its analyst-assigned cluster. This is
accomplished by computing a distance between the observation and
the involved cluster(s) centroid(s), ranking the attributes based on
dissimilarity, and then updating the attribute weights accordingly.

Force-Directed Model: After a distance has been computed
for every observation pair, these distances are loaded into a force-
directed node-link visualization. The force-directed graph then
stabilizes to a low-energy layout. There is no inverse computation
for this model.

k-Means Model: Clusters are computed continuously using a
modified k-means algorithm in the forward computation of the k-
Means Model. This computation has been altered from traditional
k-means to include a maximum cluster radius that allows some
nodes to exist external to all clusters. As the force-directed graph
reaches a stable layout, individual observations may transition into
and out of clusters as they move closer to and further from each
cluster centroid. The inverse computation of this model detects
analyst-initiated changes in observation clustering assignments, and
it passes the old and new cluster information to the next inverse
computation.

7 DISCUSSION

In this section, we discuss the implications of our new pipeline that
is capable of capturing the complexity of semantic interactions in
visual analytics tools. This discussion includes how this pipeline
highlights the various semantic interaction possibilities in any given
visual analytics tool, the ability to leverage this pipeline for rapid
prototyping, and the limitations of this pipeline.

7.1 Exploring the Design Space of Semantic Interaction
With the greater emphasis placed on the mathematical models in
our proposed new pipeline for visual analytics tools, opportunities
for semantic interaction are highlighted. This is due to the fact
that every Model should have both a forward computation and an
inverse computation. If a given pipeline does not have an inverse
computation for a Model, such as in the Sampling Model in the
Piecewise Laplacian projection tool [22], then perhaps there is a
missed opportunity for implementing a semantic interaction. Even
for those that already have inverse computations, there may still
be the potential to implement an additional or alternative inverse
computation for the same Model.

For example, the forward computation in Andromeda’s WMDS
Model uses two parameters (the high-dimensional data and a set
of attribute weights) to produce a single output (low-dimensional
coordinates). However, the “inverse WMDS” computation described
only computes new attribute weights given new low-dimensional
coordinates, thereby assuming the high-dimensional data is static.
However, what if instead the assumption was that the attribute
weights were static and new high-dimensional data for an undefined
observation was desired? Such an interaction may be triggered by
the analyst clicking in an empty space of the projection not already
occupied by an observation, effectively interpolating what attributes
a high-dimensional observation would have if it were projected in
that location.

Additionally, our previous research has identified a variety of
ways to combine a similarity-based Model with a clustering Model
to create different types of projections [30]. With this multitude of
pipelines possible, there are naturally many methods of enabling
semantic interactions with just two Models. Thus, in cases such
as these, our newly-proposed pipeline can help further explore the
design space of semantic interaction by highlighting the numerous
possibilities, even when there are few Models involved.



7.2 Rapid Prototyping to Explore Design Trade-Offs
To quickly and efficiently explore the design space of semantic in-
teraction, the ability to rapidly prototype several techniques from
the visual analytics literature, and augment them with semantic
interaction, would be immensely helpful. Trade-offs in different
implementations may imply different Models being used or perhaps
the same ones being altered to produce different results. For ex-
ample, Cosmos is very similar in appearance to Andromeda, yet
functions more like StarSPIRE (as evidenced by the similarities
in their pipeline representations). SIRIUS and the visualization by
Wenskovitch and North are both similar to Cosmos in their own man-
ners as well, yet these tools operate in distinctly different manners
by adding additional Models to the pipeline.

However, the current issue in experimenting with these kinds of
trade-offs is that many visual analytics tools are created such that
changing one Model for another is difficult; too often, the program
structure for the given tool is heavily reliant on the specific Models
being used. By defining the pipeline components and creating a
pipeline such as the ones that we present here, we assert that our
new visual analytics pipeline can help promote more modularized
code. This is because every pipeline component has composabil-
ity requirements, which are described by the arrows between the
pipeline components. By structuring the program for the tool in
this manner, the composability requirements help enforce modular
code design. This modularity then makes interchanging different
Models– and even different Visualizations and Data Controllers–
trivial, thereby making exploring different areas of the design space
of semantic interaction even easier.

For example, it may be apparent from Figure 6 and Figure 7
that Cosmos and SIRIUS have very similar-looking Visualizations.
This is because the Cosmos pipeline– including its Models and
Visualization– were all leveraged and adapted to enable SIRIUS. In
fact, we have been able to separate each pipeline component to the
point that we are able to interchange Cosmos and SIRIUS at will.

7.3 Limitations
Despite the power and flexibility of our proposed new visual ana-
lytics pipeline for semantic interaction, it is not without limitations.
We briefly address several of these limitations here.

7.3.1 Requirements Limitations
The primary limitation of our semantic interaction pipeline lies
in the requirement of providing an inverse computation for each
forward computation. We assert this requirement as essential for
enabling semantic interaction, yet we provide no guidance for how
to determine what such an inverse computation should be. That is,
the inverse computation can be mathematically rigorous, heuristic,
or probabilistic, but the creation of the inverse computation lies with
the Model creator.

Similarly, the pipeline requires Models to be composable with
other pipeline components, but we provide limited instructions for
defining this composability. For example, if the Text Data Controller
for Cosmos were altered to use dynamic document sets, then at some
point before any of the data preprocessing steps could be performed,
the TF-IDF values would need to be computed on the fly. This would
allow the other pipeline components to remain unchanged. If instead
the TF-IDF values were not computed and no data preprocessing
steps occurred in the Data Controller, the responsibility for doing
so (to maintain data composability with the WMDS Model) would
either fall to the Relevance Model or to a new Model that would rest
between the Data Controller and Relevance Model.

7.3.2 Limitations of Pipeline Components
Another potential limitation is that we define a Model to be com-
prised of any forward computation and at least one accompanying
inverse computation. It may very well be that there are only a few

different categories or types of such Models (e.g., data manipulation
Models that work the raw data into a form usable to the Visualiza-
tion, projection Models that determine the overall type of projection
used in the Visualization, and other Models that seek to augment
the Visualization with additional information). Such a categoriza-
tion may be useful to define the nuanced differences between how
Models may be used and which ones definitely should have inverse
computations to interpret semantic interactions. However, we do not
attempt to make any such categorization; instead, we focus on the
overall pipeline structure to generate discussion and critical thinking
regarding which Models should be included, how the Models fit to-
gether to realize an interactive visual analytics tool, and the various
manners in which semantic interaction can be realized.

7.3.3 Limitations of the New Visual Analytics Tools
Rather than creating fully-featured tools, we use this pipeline to
quickly and efficiently prototype visual analytics tools to explore the
semantic interaction design space. As a result of this design decision,
the prototypes that we implemented in Section 6 only support a
limited number of semantic interactions. However, we argue that
each of our prototypes can support additional semantic interactions
with the addition of more Models or alterations of existing Models
in each pipeline.

8 CONCLUSION

In this work, influenced by the Sensemaking Loop described by
Pirolli and Card [23] as well as the growing body of visual analyt-
ics tools that implement semantic interaction, we proposed three
characteristics shared by semantic interaction applications: model
composability, model inversion, and pipeline bidirectionality. From
these characteristics, we proposed a new visual analytics pipeline
that enables proper representation of the complexity involved in
semantic interactions. This new pipeline is comprised of three main
types of components: Data Controllers, Models (containing forward
and inverse computations), and Visualizations.

We demonstrated the ability of our new pipeline to capture se-
mantic interactions by providing pipeline representations of existing
visual analytics tools. Then, we discussed pipeline representations
for new visual analytics tools, highlighting the extensibility of this
new pipeline new research in this area.

We also briefly discussed how this new pipeline may help further
the exploration of the design space of semantic interaction and
enable rapid prototyping of new visual analytics tools with semantic
interaction. By rapidly prototyping such tools, researchers will
be able to quickly create and study many alternative methods of
semantic interaction. We intend to continue expanding on our own
prototypes and conduct user studies to study how analysts perceive
and use different visualization and interactions. Such research may
uncover which methods best support the analyst’s sensemaking
process and how to develop better visual analytics tools in the future.
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