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ABSTRACT

User interactions with visualization systems have been shown to
encode a great deal of information about the the users’ thinking
processes, and analyzing their interaction trails can teach us more
about the users, their approach, and how they arrived at insights.
This deeper understanding is critical to improving their experience
and outcomes, and there are tools available to visualize logs of inter-
actions. It can be difficult to determine the structurally interesting
parts of interaction data, though, like what set of button clicks con-
stitutes an action that matters. In the case of visual analytics systems
that use machine learning models, there is a convenient marker of
when the user has significantly altered the state of the system via
interaction: when the model is updated based on new information.
We present a method for numerical analytic provenance using high-
dimensional visualization to show and compare the trails of these
sequences of model states of the system. We evaluate this approach
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with a prototype tool, ModelSpace, applied to two case studies on
experimental data from model-steering visual analytics tools. Mod-
elSpace reveals individual user’s progress, the relationships between
their paths, and the characteristics of certain regions of the space of
possible models.

Index Terms: Human-centered computing—Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

Visual analytics facilitates discovery and analytical reasoning via
the combination of data analytic models and interactive visualiza-
tions [45]. Because such systems provide tight connections between
the user, the visual interface, and the underlying analytics, the user’s
interactions within visual analytics systems have been found to con-
tain a great deal of information about the users’ thinking processes,
their approaches, and how they arrive at insights [17]. The design
of automated and semi-automated methods for recovering such in-
formation by analyzing the user’s interaction history and analysis
trails – commonly referred to analytic provenance – has become an
increasingly important research topic in the visualization community
due to its importance in training and verification, and to its role in
the development of mixed-initiative systems [39, 40].

However, many existing tools in analytic provenance only go so
far as to show a record of the user’s interactions (e.g., [24,27,30,42]).
They seldom contain methods of visualizing the intermediate soft-



ware states or data models typically generated behind-the-scenes by
visual analytics systems. For visual analytics, this often entails the
sequence of different parameters assigned to the analytic models to
show specific aspects of the data to foster exploration and analysis.
In addition, they rarely communicate the logical link between the
interactions and the resulting models. Many methods of understand-
ing a user’s analytic provenance typically involve a tedious manual
reading of the logs as in Dou et al. [17], or building a system that
codes its own interactions into a taxonomy so manual review is more
convenient [23, 27]. Generally, the effort required to synthesize and
analyze these logs is a bottleneck to studying analytic provenance.
More recently there are visual analytics systems that help to dis-
cover patterns within logs by enabling grouping or searching of user
actions [13, 25, 51].

In this paper we propose an alternate, visual approach to analytic
provenance that is designed for the growing number of systems
using machine learning (though it may be flexible enough to be
used more broadly), but automatic enough not to require manually
processing full logs. We create a mathematical representation of
users’ progress in using software, introducing numerical analytic
provenance. By creating a vector space to represent software states
(possibly extracted from logs), we can visualize users’ processes of
using an analytic tool. Each software state corresponds to some view
of the data delivered to the user in response to some input or controls.
Conveniently, systems that leverage machine learning build models
as users interact that can easily be converted to vectors. Therefore,
visualizing sequences of these models means seeing the progress of
users through their analytic process. By gathering these and creating
a vector representation, we can visualize the user’s progress through
the space of possible states, i.e. the provenance of their analysis.

We have implemented the numerical analytic provenance ap-
proach in a prototype tool called ModelSpace. This tool visualizes
the analytic trail of a user by creating a spatial layout of the vi-
sual system states, using their vector form. A given user’s trail is
connected with a line and color-coded, providing a connected scatter-
plot [26], where the points represent states and the lines connecting
the points represent the transitions between the states through time
(similar to Time Curves [3]).

With such a compact representation, ModelSpace can visualize
multiple users’ analysis trails, or multiple analysis trails of the same
user in the same canvas. In this way, we visualize how users in-
crementally interact with and change the analytic models in visual
analytics systems. Further, the model spatialization provides a base-
line structure that we annotate with data about interactions between
state changes. In this view, analytic trails can be quickly compared
and analyzed. For example, when two trails include adjacent states,
it may signify that these two investigations came to similar inquiries,
reflected by the similar models the users were considering. Mod-
elSpace provides features to deepen the exploration, like the ability
to highlight visual elements with a keyword search over the interac-
tion details.

We tested our prototype on data collected from experiments with
two visual analytics systems: (1) Dis-Function [9], an interactive
tool for learning models about high-dimensional numerical data
by simply performing iterative tweaks to a data visualization, and
(2) Doc-Function [8], a tool that allows sense-making of text cor-
pora through manipulation of keyword spatializations based on their
perception of keyword relationships. The authors of those works
provided the interaction logs and other data collected during the
evaluation experiments of those software prototypes. Our Mod-
elSpace implementation parses the logs (with a custom function per
application), extracts the states, and provides an interactive visual-
ization that makes it possible to explore a wide collection of facets
of the participants’ analytic provenance and develop insights into
how different users explored the data.

While, we performed our experiments on two visual analytics

systems with machine learning back-ends that lent their internal state
well to numerical analytic provenance, we posit that the use of Mod-
elSpace can be extended to other, non-visual-analytics platforms.
Recommender systems, for example, are not analytics systems, but
export models at each step of user interaction that could be visu-
alized and compared with numerical analytic provenance. In the
Discussion, we explore an application to a system that uses a visual
interface but has no back-end machine learning model. We also
discuss the limitations of our approach and current prototype, and
describe areas for future improvement. Overall, our contributions in
this work are that we:

• Present the concept of numerical analytic provenance, a novel
approach to studying analytic provenance in visual analytic
systems by visualizing the changes to their state as users in-
teract via the proxy of changes to their underlying machine
learning models.

• Provide a prototype tool to illustrate this concept that extracts
models from user study software logs and creates an interactive
spatialization with features to explore the analytic trails of
users in detail.

• Evaluate our tool and this concept with two case studies on
visual analytics systems.

2 RELATED WORK

Analytic provenance in the visual analytics community broadly
includes consideration for the history of how an analyst progressed
through the various stages of his or her analytic process [16, 22, 38–
40, 50]. Because visual analytics leverages human reasoning with
a computational system, understanding how users build knowledge
and insight can have implications for evaluating tools, as well as
identifying ways to enhance collaboration between the user and the
computer [39]. There are multiple stages to effectively analyze user
interaction histories to gain such an understanding about the user,
including the most applicable to this work: encoding the interaction
data and recovering semantic meaning behind the user’s actions
[19, 38].

The field of analytic provenance offers many examples of how to
capture and encode this type of data [4, 14, 17, 23, 27, 33, 42]. One
problem is that the desired level of granularity for understanding
users’ provenance is vastly different from the level at which standard
computer software directly represents and logs interaction [23]. On
one end, we seek to find patterns in semantic intentions of users,
e.g. instances where two people may have a differently expressed
high-level intention or strategy. On the other end, we have a wealth
of recorded low-level system events like mouse movements and
clicks.

One method to get semantic details from low level information is
to carefully code the interaction data by hand [42]. In fact, it has been
shown that process and strategy can be recovered this way [17], but
the process is tedious and slow. Another solution is to build software
with an organization scheme for interactions in mind. Systems
taking this approach can provide powerful tools for users to examine
their own analytic provenance trail in real time, and even organize it
into useful, human-readable categories. Examples include VisTrails,
HARVEST, CzSaw, and Graphical Histories [4,12,23,27,32], which
capture sequences of states and visualize them for the user to use for
navigation through the analytic process. For example, showing users
a series of thumbnails of previous visualization states helps them
recall aspects of their process and return to a previous state quickly
if they decide to go back [27]. An additional layer of complexity
can be added to show branching [18, 43]. However, the concepts
in these works are built to work with specific software and while
the concepts may generalize, the automation does not. There are
a number of survey papers that provide a deeper set of examples



from the broad spectrum of work in analytic provenance research
(see [15, 22, 40]), but the central problem of gaining deep insight
from low-level interactions remains a theme.

Recently, there are visual analytics tools to help with generic
log data. Han et al. [25] process logs and present the user with an
interface for organizing low-level tasks and building up higer-level
ones. Zgraggen et al. [51] present a visual query language that can
work over event sequences captured from logs to give a user the
search capability empowered by regular expressions in text data.
Chen et al. [13] provide a visual analytics system for sequence data
that includes the use of the minimum description length (MDL)
principle to help group interaction patterns automatically.

In this paper, we take a different approach to managing this
challenge. We focus on the case where there is a software state that
encodes the semantics of the user’s sensemaking, and the state can
be converted into a high-dimensional vector without direct human
involvement per state. We call this approach numerical analytic
provenance and detail it in Section 3. Specifically, it is intended for
the case when the system being studied uses machine learning as
part of an interactive system, and the changing, underlying machine
learning models can be represented as a vector. The idea behind a
numerical representation of the state of a visualization system was
previously suggested by van Wijk [48] and adopted as the basis of
the P-Set model by Jankun-Kelly et al. [29]. Our use of numerical
analytic provenance extends these works and demonstrates how such
an encoding can be applied to the visualization and analysis of users’
interaction trails with visual analytics systems. The main savings is
that the vectors can be created as the software runs or by processing
log files with scripts as opposed to by hand.

To gain insight from this mathematical representation, we use
visualization for the high-dimensional space, projecting the state
vectors into a 2D space as dots (e.g. using Multidimensional Scaling
(MDS) [34]). These dots are connected by lines to show sequences,
as in connected scatterplots [26]. By using this compact represen-
tation, we have room to connect additional interaction information,
e.g. annotating with what a user did that caused her to land at a given
state. Our visualization is also similar to Time Curves [3] and the
Dynamic Network approach [46]. By using computational models
as software states and encoding them as vectors, we position them in
space and show progression through that space over time with lines.

3 NUMERICAL ANALYTIC PROVENANCE

There have been multiple approaches to analytic provenance, but
one critical problem is that in seeking to understand how people use
software, it becomes necessary to follow their trail through a wide
array of possible interactions. With increasingly complex software,
the task of capturing and analyzing exactly what a user has done in
a way that can be efficiently understood is still a challenge. Previ-
ous work in analytic provenance has involved numerous methods
for capturing the broad spectrum of interactions and a variety of
encodings [4, 17, 23, 33, 42] to make it possible to analyze these
interaction streams. While some work has sought to automatically
encode and analyze interaction streams, most of the efforts have
involved coding by hand for different types of interaction [17,23]. A
methods of automatically encoding and analyzing user interactions
was proposed in Brown et al.’s work to learn models about users
based on their interaction data [10], but the technique compares
models of users, not their analytic provenance.

3.1 Vector Space of Models
Instead of manually coding user interactions into a human-readable
format before beginning to build an understanding, we propose au-
tomatically encoding a numerical representation of changes to the
internal state that the analytic software undergoes during the analysis
process. We refer to this concept as numerical analytic provenance,
and the encoded states as the state models. Deciding how to encode
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Figure 2: This figure illustrates how the series of models created
by a user’s interaction trail can be represented by vectors and thus
visualized for examination. Each dot represents a state model vector
Θt

u that specifies the internal state of a system for one user, u, at one
timestep, t.

the state in a general way is an open problem as a solution would
require solving the same problems that are left unsolved by other
provenance systems, namely automatically extracting meaningful
tasks and actions from low-level event data. We focus on systems
that use machine learning back-ends to aid the analytic process and
when possible, simply use the vector representation of the machine
learning model as a state. We assume the interaction that causes the
model to be updated is a significant action and the model update
a significant change to the display, making these events good piv-
ots for a visualization of the user’s process. These states are also
straightforward to extract from a log if they have been included, in
contrast to actual user intent or high-level action. The technique
presented in this paper visualizes the model sequences in the space
of possible models by creating a visual layout such that more similar
models are drawn nearer to each other. Because our representation
consists of vectors, we can use high-dimensional data visualization
techniques to calculate a projection, and the resulting visualization
shows the interactions performed by different users in context of
each other and in context of the broad spectrum of possible software
states.

Figure 2 illustrates the concept of projecting three users’ analytic
trails from their high-dimensional vector representation down to
a 2D visualization. Using this projection approach, it becomes
immediately apparent when users’ paths become close to each other,
and when similar models pack together indicating an interesting
region of the overall state space. Further, this technique becomes
more illuminating when we use the layout of the state models as
a canvas to decorate with a wide array of other information. We
provide context to the provenance by connecting the dots with lines
that represent all the interactions that led to a state change, i.e.
creating a connected scatterplot. Annotating the lines with these
data integrates the interactions and their effects in one view.

Applying this technique for visualizing multiple users’ numerical
analytic provenance has a wide range of uses. By visualizing all the
users’ interaction histories together, we can compare their analytic
processes to build an understanding of how and when they differ. For
researchers or developers conducting experiments to evaluate ana-
lytic systems, this makes it possible to explore the trails of individual



users and the relationships between their analytic processes. The
analysis can reveal if there are areas of the model space that users
always retreat from, or if different types of users pursue broadly
different trajectories. For managers of multiple analysts, this not
only allows oversight of progress, but has the potential to mitigate
bias by alerting the manager when analysts are converging on one
area of the model space. Additionally, if deployed as a provenance
tool as part of a single user’s interface (e.g. as in [12, 23, 27]), this
technique could help the user understand not just what states she or
he has seen, but also how they relate to each other.

3.2 Example Model States of Visual Analytic Systems

While any visualization can be represented by its internal state [48]
to apply our proposed numerical analytic provenance approach, the
use of a high-dimensional numeric vector to represent the state
can have special implications for visual analytics systems. These
systems often incorporate machine learning techniques or other data
models to assist the user in exploring and analyzing data. Since
machine learning and data models are mathematical in nature, they
can often trivially be compactly represented as a high dimensional
vector that can be used to represent the state of a user’s analysis or
exploration.

One type of visual analytics system that tightly couples a user’s
interactions with an underlying data model is model-steering vi-
sual analytics. These analytic systems capture user interactions
with a data visualization and build a data model that encapsulates
the changing data understanding of the user [19] . For example,
ForceSPIRE [19] is an interactive visual tool for text analytics. The
user is provided a visual layout of a set of documents and interacts
with them via search, moving documents relative to each other, and
highlighting text. Based on these interactions, the system learns
a model that characterizes the relative importance of the different
words that appear in the documents. Each model update triggers a
layout update and users iteratively refine the model through several
interactive steps, leaving behind a trail of models about the words in
the text corpus. Other examples use model-steering for such domains
as ranking [49], grouping Facebook friends [1], high-dimensional
numerical data [9, 20, 35, 41], and network alarm triage [2, 21].

Conveniently, these models can also be considered state models,
as they include the software state important to generating the visu-
alization. By applying the numerical analytic provenance concept,
we can visualize the relationships between the different data models
the user constructed, each one showing the actual data features that
were important to the user at the given time. We can annotate lines
connecting these models with all the interactions between updates,
indicating perhaps what documents were read and what words were
highlighted. The process of exploring the analytic provenance is
simplified, and the possibilities for discovery are broadened.

4 MODELSPACE

In order to evaluate the numerical analytic provenance concept expli-
cated by the previous section, we built a prototype interactive visual
system, ModelSpace (see Figure 3), that enables analysis of user
trails through the space of possible state models. In the following
subsections, we describe the implementation and features of this pro-
totype, beginning with the data required as input. We then describe
the mechanism for computing a layout and the interactive tools that
make analysis possible.

The ModelSpace prototype interface has been implemented for
the web, using JavaScript with D3 [5], HTML, and CSS. The back-
end software is responsible for processing log files, computing the
projection, and serving the front-end with code and display data.
It is implemented in Python 2.7 and uses the popular Numerical
Python [47] and Scikit-Learn [11] packages for computation, and
the Bottle [28] micro-framework for serving files.

4.1 Data for ModelSpace
Though the concept of numerical analytic provenance could be ap-
plied to a streaming context, with models updating the interface as
they became available, our prototype is built to extract user inter-
actions and model states from logs. For any given application, a
function is needed that processes the logs to gather models and any
accompanying information about user interactions between them.
This can involve merging multiple records, e.g. log files from the
software itself and digitized notes from an experimenter (as in the
Doc-Function case study presented in Section 5.2). The only abso-
lute requirement is that the extracted models can each be represented
as a vector, whether explicitly exported or constructed from the logs.

Both of our case studies produce internal models based on certain
interactions, so our log processing simply extracts the times at which
a model update was performed and captures the user input that
caused the update and resulting model. The models created by these
steps are represented by dots in the visualization in ModelSpace. The
logs can include other actions performed between model updates,
such as searching for words in documents in a text-analysis system.
These non-model-generating interactions are all captured as they
will be used in ModelSpace to annotate the lines that connect the
dots, representing the actions taken between model updates.

When model changes can be reverted, i.e. with an undo feature,
we keep track not only of the model update but the fact that it repre-
sents a reversion. The ability to backup in analysis is an effective
tool for the user to expresses intention, informing us that the last
model we saw could be a false step. ModelSpace represents this
important contextual information with a curved line pointing back
to the preceding dot.

Finally, it should be noted that while parsing a log file is sufficient
for some applications, others will have more sophisticated data
available and a more complex function for integrating it. In the Doc-
Function case study below, for example, there were not only logs
from the software itself, but notes from the experiment administrator
about when each participant described certain insights. Information
like this can be digitized with timestamps and merged at the time the
logs are processed so that the visualization can reflect observations
of participants along with the state models.

Overall, the prototype is designed to demonstrate the numerical
analytic provenance concept specifically with two examples. While
we made choices specific to those examples, we also sought to keep
the visual representations and tools generic enough that they could
be adapted to a wide range of data.

4.2 Calculating the Layout
When state models come to ModelSpace, they are vectors, gen-
erally in a high dimensional space that reflects the complexity of
the analytic software. In order to visualize these high-dimensional
states, we create a spatialization of these vectors that can be viewed
in two dimensions. Since the desired view groups the states to-
gether based on their similarity, we use a Multidimensional Scaling
(MDS), which is a type of projection of points into low-dimensional
space (two-dimensions for our visual purpose) that optimizes for
preserving the pairwise distances between points across the high-
and low-dimensional spaces. This implies two useful features of
the spatialization: first, similar models will be shown as dots that
are close to each other, resulting in groups of similar models, and
second, regions of the space of models will be reflected as regions
in the projection. Other projections can achieve this result as well,
but we chose MDS using Euclidean distance calculations because in
comparison to other projections such as principal component anal-
ysis (PCA) [31] and t-distributed Stochastic Neighbor Embedding
(t-SNE) [37] or alternative parameters to MDS, we found the results
easiest to read. Note that any dimension reduction technique pro-
duces projection errors because generally high dimensional spaces
inherently include information that cannot be represented with fewer



Figure 3: ModelSpace, our prototype system for analyzing interaction trails. In this image we see a layout of all the models that have been
created during the experiment described in the Dis-Function case study. Each model is represented by a dot, and we connect the dots for each
user, representing the time between changes to the model. In this image, the width of the lines are varied by the number of points moved during
the corresponding interaction and the dots are shaded by the accuracy values of the models. The legend in the bottom right of the visualization
shows the move count and accuracy scores to which the line width and dot shadings respectively are mapped. In addition, two selected dots
(models by User 6) are highlighted in blue for a feature on the left panel showing which data features they have in common. The top five
features of these models are also displayed in the two Info Boxes on the right.

dimensions. There are techniques to interpret errors (e.g., [7, 44]).
Incorporating these techniques is out of the scope of this paper but
will be an important future work for this project.

Calculating a spatialization of the states means that we can draw a
scatterplot with a dot for each state, in which the more similar states
are shown closer together. To show connections between states,
i.e. those that occurred in sequence for a single user, we connect the
dots with lines. This results in a connected scatterplot. ModelSpace
is flexible enough to incorporate other techniques of generating a
connected scatterplot as long as the points in the plot represent the
states of the system and states are connected based on the order
in which the states were created. As described below, additional
information can be added to this baseline visualization by mapping
interaction data to lines and dots.

4.3 ModelSpace Prototype Features

Figure 3 shows ModelSpace, the prototype interactive visualization
tool we created to demonstrate numerical analytic provenance, as
described in Section 3. We have designed the ModelSpace prototype
to make possible an extensive analysis of interaction history data
with a straightforward but powerful selection of tools. In the figure,
the dots represent state models achieved by some participant at
some point in the analysis task. The lines connect the models and
represent order of the of the model updates. The arrows on the lines
indicate the direction of progress from one state to the next. All the
participants start with the same unweighted model in the example
shown, so all the user lines begin at the same point. The layout of
the models makes a clear comparison between the trails of different
users and different user groups possible, but to find patterns in the
models and interactions, some additional features are provided.

First, we make the rich interaction data available as annotations to
the dots and lines, visible when the mouse cursor is over the element.

In Figure 8, showing ModelSpace for one of the case studies, the
orange rectangle is the mouse-over text for one dot, displaying the
top ten most significant keywords that correspond to that model. In
addition, the layout view supports panning and zooming. With a
state model that includes human-readable features, as in the case of
a model-steering system where the model features are dimensions
of the original data, this provides insight into what was emphasized
to the user at the point in their analysis corresponding to the model.
When applicable, other information can be included here. For exam-
ple, in one of our case studies, the experiment used data with known
ground-truth, so the accuracy of the user model relative to the ground
truth can be shown here to show how similar this user’s provenance
had progressed toward some possible notion of optimum.

To make comparison between different users and user groups
possible, there is a User Selection Panel [A] at the bottom of the
screen. The check boxes enable the users lines and dots in the view,
and the group selection boxes at the top of the panel toggle the entire
group as a whole. These groups could be used to group the users by
any helpful categories. The view can be further customized with the
Display Options Panel [B]. First, the same user groups can be used
to color the lines and dots with the Color by Group option, making
comparison of group behavior much simpler. To simplify the view,
the dots or lines can be hidden. For example, in studying regions of
the space by what the models have in common, the lines may be a
distraction. This menu also controls mappings of data features to the
display. Depending on the data available for the specific application,
ModelSpace can map size and gray-scale shade of the dots and lines
to data. For example, in Figure 3, the dots are shaded to the accuracy
of the corresponding model. A legend is automatically added to the
bottom to show the upper and lower bounds of the data mapping for
whichever options are active.

When exploring the data, users will look at the information



available as mouseover text for numerous models and lines. The
mouseover modality alone makes it difficult to compare information.
There are two Info Boxes [C] along the right side that persist the in-
formation associated with last two visual elements (dots or lines) to
be clicked. The Clear Info Boxes button empties both boxes. When
trying to compare the contents of multiple elements, seeing two
alongside each other could be insufficient. The Shared Keywords
[D] feature automatically detects what features different models
have in common. The user can click on multiple dots, which are
then colored blue to show they are being included in this comparison.
The shared keywords box shows the keywords that the annotations
for the selected dots have in common. For a model-steering system,
i.e. in our case studies, the annotations of a dot include the names
of the most important dimensions of the original data at that time.
Therefore the shared keyword list shows the salient features of the
data that are emphasized across the selected set of models. This
feature can be used, for example, to discover what makes models
that are shown close together actually similar to each other. Another
usage would be to see what shared features were being shown to
users at diverging points in their analysis.

Finally, there is a search feature, exercised by the Color by
Search [E] box on the left side. The search accepts a string and
highlights dots and lines that fulfill the query until Dismiss is clicked.
This can be used to help find regions of interest or to look for ele-
ments that correspond to known entities in the analysis, as in Figure
6(c). For dots, this means highlighting models where the keyword
was an important feature. Lines will be highlighted when the cor-
responding interaction sequences involved the search terms. For
example, the user might have been reading lots of documents related
to a certain word before updating the system about its importance.
Searching for that word would show other times when users read
such documents and when it was important to other models.

5 CASE STUDIES

In this section, we demonstrate the capability of ModelSpace by
using it to examine users’ analytic trails from two different case
studies to study their numerical analytic provenance. In both cases,
the participants used a model-steering visual analytics system whose
states can be easily converted to the high-dimensional vector rep-
resentation used by the proposed ModelSpace approach. In these
applications, as a user interacts with the system, the interactions are
used by a machine-learning back-end to learn a new data model,
which then updates the view so the user can iteratively improve
it. Conveniently, creation of a new data model from user feedback
represents an important state in the analytics, and the model’s vector
representation is straightforward.

We cover each case study separately, first briefly describing the
application and the experiment from which the data are collected,
then explaining the mapping to ModelSpace and the application-
specific features added. Finally, we discuss the insights gained by
applying this technique.

5.1 Dis-Function
Dis-Function (Figure 5) is a prototype system that allows users to
leverage their knowledge about data to build a machine learning
model without having to understand the underlying algorithm. In
this system, a user interacts directly with a visual representation of
the data, specifically a two-dimensional layout of high-dimensional
data.The layout is directly dependent on the model, so by providing
feedback on the layout, the user (a data domain expert) causes
the machine learning algorithm to update the model so that it is
more consistent with the user’s expectation. The newly regenerated
model is used to create a new layout and the process can continue,
iteratively improving the model, until the user is satisfied [9]. The
model being learned at each step is a vector of weights, one for each
data feature, and thus can be directly used in ModelSpace.

5.1.1 The Experiment
For this case study we used the experimental data from the authors
of Dis-Function. Their participants include ten university engineer-
ing students (6 male, 4 female) at varying degree levels of study –
five undergrads, one masters, and four Ph.D.s1 The participants ap-
plied Dis-Function’s model-steering technology to the Wine dataset
from the UCI Machine Learning Repository [36]. These data have
178 instances, each representing one individual wine, and there are
thirteen features, each representing a chemical component. The
authors augmented the dataset with ten synthetic noise features (gen-
erated uniformly at random). Since the participants were not experts
in the chemical composition of wine, Brown et al. provided them
with labels that classified each data point as a certain type of wine
by coloring the points in the display. The task, then, was to use
Dis-Function by providing feedback to make the visualization more
closely group the points with the same label, removing the influence
of the noise.

5.1.2 The ModelSpace
As the experiment participants interacted with the system, Dis-
Function logged all the interactions that produced model updates,
and the updated models. These data were straightforward to extract
and comprise a convenient set of state models for our application
of ModelSpace. As seen in the legend at the bottom left of Figure
3, each user’s trail is represented by a different color. All the users
start with the same initial model in the experiment, and thus all the
user lines begin at the same place in ModelSpace.

Because the experiment with Dis-Function uses labeled data, we
can actually calculate for each model produced by each user at each
step, the accuracy of the model at predicting the given classes of the
data. We apply the k-nearest-neighbor algorithm with k = 3 to make
predictions with the Dis-Function models and use ten-fold cross
validation to calculate accuracy scores. These accuracy scores are
visible when the mouse cursor is over a dot, along with the names
of the variables that had the highest contribution to the model at
that point. When the mouse cursor is on top of a line, an annotation
reveals which data points the user manipulated to cause the model
update that happened during the period that the line represents. The
same information used in the mouseover annotations can also be
mapped to the color and size of the dots and lines, i.e. dots can be
shaded or sized to reflect the accuracy of the corresponding model,
and lines can be shaded or sized to reflect the number of manipulated
data points.

5.1.3 Results
By exploring the ModelSpace generated for Dis-Function and in-
teracting with its various features, we were able to capture some
interesting trends. There is a clear indication that the higher accu-
racies are focused in one area of the visualization as seen in Figure
4(a), where the dots have been colored based on the model accuracy.
The black ellipse shows the region with the strongest models. All
the participants moved in directions of higher accuracy, but for some
(labeled Users 5, 10, 11), the final model is not the most accurate
one in the interaction trail. This can be seen in Figure 3 in which
the dots are shaded with the accuracy values of the corresponding
models. Following these users’ lines from start to finish shows this
non-monotonic progression. This outcome is not unexpected as the
experiment participants were unable to see the accuracy values as
they interacted with Dis-Function.

Another pattern is clear in Figure 4(b), in which each line’s width
is mapped to the number of points manipulated during that interac-
tion period. Participants who travelled a shorter path overall, i.e.,
those who use fewer iterations to reach the final model, move more

1The user IDs shown in ModelSpace end at 11 but skip 3 due to one
planned participant who was unable to participate.
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Figure 4: Views demonstrating features of the ModelSpace for Dis-Function. In (a), the dots are shaded by the accuracies of the models to
which they correspond (higher accuracies are darker). The area marked by the ellipse contains the higher-accuracy models. In (b), the lines are
colored according to group membership, and their widths encode the number of points involved in the corresponding model update. In (c), the
dots representing models that emphasize noise features are colored black. The rest of the dots are colored based on the users to whom they
correspond.

Figure 5: The Dis-Function prototype. The user interacts directly
with the visualization in (A) by moving the datapoints based on
domain-knowledge. The options in (B) allow the user to undo a
move and recalculate the layout after interaction. Based on how the
points are moved, the underlying metric is updated, and through
(C) and (D) the user is able to visualize the impact of the metric to
the data. (E) displays the original data with the selected datapoint
highlighted.

points during each iteration. Figure 4(b) also reveals another pattern
with the point manipulations. Almost all the users are manipulating
an increasing number of points as they are getting closer to the final
model.

Applying the search feature, we can highlight all models that
have the word “noise” in the name of one of their most salient
variables. For these data, that variable name indicates one of the
noise features added for the experiment. Figure 4(c) shows that in
fact these noise features were diminished in importance after the first
few interactions with the Dis-Function system. This helps showcase
the effectiveness of Dis-Function at removing that artificial noise for
its users.

Finally, we can investigate performance differences between
groups of users. The participant group can be used to color the
dots and lines. In Figure 4(b), we use this feature to see that the

undergraduate and Ph.D. students’ trails are moving mostly toward
two separate directions. This suggests that these two groups are
taking different approaches to interacting with Dis-Function.

Through these results we are able to gain a better understanding of
the participants in the Dis-Function experiment, and the behaviours
associated with different groups. ModelSpace also clearly under-
scores that through interactions with Dis-Function, all the users were
able to improve their models to attain higher accuracies and reduce
the significance of the noise features. While this was known from the
publication about Dis-Function, the authors of that paper were not
able to do such in-depth analysis about the patterns of interactions
that lead to these results.

5.2 Doc-Function

Doc-Function [8] (Figure 7) is a visual analytic tool designed to
enable sensemaking of text corpora through manipulation of a key-
word spatialization. The spatial layout of the keywords encodes
the similarity between keywords with respect to the documents in
which they co-occur. Doc-Function allows users to manipulate the
spatialization of keywords extracted from documents to perform
model-steering without having to understand how the new model is
generated. Based on the user’s evolving understanding and knowl-
edge of the documents in the corpus, the user can move the words
relative to each other to reflect the correct relationships and group-
ings. Making changes causes an update to a model that reflects
the relative importance of the documents in the corpus, triggering
creation of a new corresponding spatial layout. In this way, Doc-
Function is similar to Dis-Function, except it is designed for text.
There are a number of differences in the technology, but with respect
to ModelSpace, the main difference is that Doc-Function, taking
advantage of the properties of text data, supports a wider variety of
interactions and thus exports richer logs.

5.2.1 The Experiment

In order to visualize the numerical analytic provenance of the users
of this tool, we obtained data from an experiment that was run
to evaluate Doc-Function. The Doc-Function authors conducted
an experiment with 13 participants at a national laboratory (name
withheld for anonymous review) from four different job categories:
professional analysts (2), scientists and engineers (5), interns (5),
and administrative staff (1). The experiment used a data set designed
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Figure 6: Views demonstrating various features of the ModelSpace for Doc-Function. In (a), some lines and dots are colored black to indicate
the corresponding interactions and models reference the word “Aryan”. In (b), the lines are colored by the user groups and the widths of the
lines are mapped to the number of searches made. Note that the “Interns”, colored in red, show an analysis trajectory that is distinctively
different from the others. In (c), the lines are shaded to reflect how many documents were read and the dots are colored for the individual users.

Figure 7: The Doc-Function prototype. The user interacts with a pro-
jection of keywords (A) by moving them around into a spatialization
that better represents his understanding of the similarity between
the words. These interactions cause changes to a machine learning
back-end. The pop-up window (B) allows the user to search for a list
of documents that contain one or more words and right column (C)
displays the documents that contain a particular word upon mouse-
over. The buttons on the top (D) allow the user to perform actions
like undoing a move and highlighting all the keywords that belong
to a document. These features assist the user make more informed
movements of the keywords.

Figure 8: ModelSpace for Doc-Function. In this view, the thickness
of a line encodes the time spent by the user during that interaction.
Additionally, two points have been selected (marked in blue) and
their shared keywords are displayed in the Shared Keywords box on
the left panel. Note that this figure shows only the data display. The
rest of the interface is cropped for efficiency but is nearly identical
to what can be seen in Figure 3.



for intelligence training. The 49 documents of the corpus contain a
fictitious terrorist threat that each experiment participant was tasked
to discover. Participants were encouraged to discuss their process in
this think-aloud study, and given as much time as desired (typically
just under an hour). Full details of the study are available elsewhere
[8].

5.2.2 The ModelSpace
Just as with Dis-Function, we constructed a ModelSpace for the Doc-
Function experiment by extracting the various data models about
documents generated by the users with their interactions. Figure 8
shows the ModelSpace built for Doc-Function. The dots represent
the models and the lines are annotated with information about the
interactions that resulted in the models. All these elements are
colored by default to show which user they represent.

The Doc-Function system has a richer interaction set than Dis-
Function, and the logs reflect this diversity. The data include records
of viewing documents, using the text search feature, performing
model updates, and using the undo and reset functions. We loaded
these interactions into ModelSpace as annotations to the lines and
thus, rather than showing only model updates, we are able to show
all types of interactions by participants that led them to model up-
dates. In addition, we took advantage of the detailed notes from the
experiment administrator by digitizing them to sets of observations
with timestamps, and incorporating them into the annotations as
well. The annotations include not only what interactions the user
performed, but a distilled version of their think-aloud commentary
about their insights and process.

Beyond annotating the visual elements with the collected data,
we enable the other features to use this information as well. The
search feature can be applied to both the set of salient data features
associated with the dots, and the full set of information annotating
the lines, as in Figure 6(a). The shade and thickness of the lines
can also be mapped to the number of documents read, the number
of word searches made, time spent during the interactions, and the
number of words moved. This rich set of available information
is simple to incorporate in ModelSpace, and makes it possible to
explore the analytic provenance of the participants in much deeper
detail.

5.2.3 Results
Just as with Dis-Function, the ModelSpace of Doc-Function reveals
a number of interesting insights. By using the ModelSpace search
feature to highlight dots and lines that contained keywords, we
saw that the words such as “Aryan” were nearly ubiquitous across
the models and interactions (see Figure 6(a)). We examined the
differences between our participant groups, as seen in Figure 6(b),
by mapping color to group identity (rather than individual user). It
becomes visually apparent that the interns (colored in red) moved
in a direction with their model building that diverged from other
participant groups. This figure also shows that the interns stand
out as using lower overall numbers of searches. In fact, we can
see by switching options in the left panel, that interns moved fewer
keywords in their model-updates, and read fewer documents2.

Looking in more detail at how many documents the participants
read, we find that there is a trend of having higher read counts in
the beginning and lower read counts as the users approach their
final models. This can be seen in in Figure 6(c), where the lines
are shaded based on the read count. The starting lines for each
participant appear darker than the lines before the final model.

Through ModelSpace, we were able to gain some interesting
insights about the users’ behavior and their approach to the analysis
task. This would have been difficult to accomplish with manual
inspection of logs and interaction trails.

2We cannot guarantee the documents were read in full, but this indicates
the user was able to see their content.

6 DISCUSSION

In the process of making and using the ModelSpace tool, we have
investigated several possibilities and revealed areas for future work
that we will discuss in this section. First, we discuss other uses for
ModelSpace beyond analysis of experimental data. Next we describe
application areas beyond model-steering analytics, including some
preliminary results with interaction data from a visual search task.
We then discuss the complexities of the step of projecting the set
of models in more detail. Finally, we discuss future directions and
implications of this work.

6.1 Uses of Numerical Analytic Provenance
ModelSpace can be used in other applications besides model-
steering visual analytics systems, because the requirement for the
input is simply that there be some software state that can be extracted
and converted to a vector. For people tasked with understanding how
people use software, this broad applicability is an exciting prospect
because existing methods for analyzing the results of experiments
evaluating software can be cumbersome. Aside from analyzing
the results of experiments, this technique could be more broadly
applied to help users understand their own analytic provenance. Sim-
ilarly to the usefulness of undo history in a web browser or more
sophisticated analogs in previous analytics research [4, 23, 27], this
technology could be used to show users not only their interaction
history, but a visualization of their trails with context and ability to
move back and forth between their most useful state models. Visual-
izing for the user the space of states created during their work could
be a transformational way to make this helpful general mechanism
stronger.

Even as the visualization of this space could be useful to individ-
ual users, it could also help managers overseeing multiple analysts.
Someone responsible for the efforts of a team trying to find a threat
in a massive corpus of text data could use a ModelSpace-like tool
to view the ongoing progress of analysts and make sure they were
covering different areas of the possible model space, helping to
mitigate bias, which is a subtle and difficult problem facing such
efforts today. Another relevant domain from interactive machine
learning is recommender systems. When evaluating the quality of
a recommender system, researchers use statistical measures. But
with a tool like ModelSpace, it would be possible to gain a deeper
understanding of how different users implicitly and iteratively create
models of what they like through their ratings, comments, purchases,
and other interactions.

6.2 Application Areas
Though the case studies were both performed with model-steering
visual analytics systems, we believe this technology lends itself to a
wider array of applications. As one test of alternative applications,
we applied ModelSpace to a collection of data from an experiment
with an image search task. The “Finding Waldo” study by Brown et
al. [10] included collecting data about how a set of participants found
a drawing of a certain person in a large hand-drawn image using a
search tool that provided basic navigation controls. In that work,
the authors created multiple encodings of interaction sequences
collected from a study of users performing the search task. They
showed that the users could be distinguished into groups by perfor-
mance and other factors by applying machine learning. We apply
ModelSpace to the state space encoding of that work, which char-
acterizes a participant’s interactions up to time t by the sum of all
states of the software they have encountered by that time. States in
this case are the states of the visual search window and thus encode
the zoom level and where the user’s view is centered. ModelSpace
can use these state vectors directly, and we visualize the projection
in Figure 9. Because there is no contextual interaction information
available from this application, we include these results only in the
Discussion as a way of demonstrating the wider applicability of the



Figure 9: ModelSpace of the directional vectors of users after inter-
acting with a state space system to locate the drawing of a certain
person. The blue lines represent the fast group of users and the
yellow lines represent the slow group of users.

technique. In the figure, the groups of participants with the fastest
and slowest completion times are highlighted by color, and we can
see how different their trails are through the space of models at a
glance. The faster users have covered a broader area of the model
space than the slower users. Further, this application showcases
a much larger sample of states, showing how the compactness of
representation is useful as experiment sizes grow.

6.3 Future Work

In this section we provide a number of suggestions to future users
of this technology. First, we believe it is possible that a projection
method outside the scope of this work could be a better fit to this
type of data. To our knowledge, there is no automatic method for
selecting the ideal projection for this task, so the user could be given
a choice.

The current version of ModelSpace makes it possible to review a
significant amount of information, but statistical and model-building
tools within ModelSpace could strengthen conclusions of the analy-
sis. For example, after discovering a pattern in the main visualization,
e.g. a connection between the number of interactions performed be-
fore generating a model and the model’s likelihood of including
some particular variable, there could be a feature to test the hypoth-
esis by calculating a correlation between those occurrences in the
data. Perhaps, after discovering interesting comparisons between
two groups of models, the user could indicate the groups, and the sys-
tem would respond with an automatic categorization of what model
features differentiate them. Finally, with analytics software getting
increasingly complex, the ModelSpace concept could be adapted
for more sophisticated types of models, as in the multi-model text
analytics of StarSPIRE [6].

We believe this numerical form of analytic provenance opens up
new avenues for using visualization to explore users’ interaction
patterns. Unlike traditional visualizations of interaction logs, the
use of ModelSpace allows immediate comparison of the analysis
trails between multiple participants. A thorough examination of the

benefits and limits of this approach will require others to apply it to
their own problems and evaluate it for their purposes, and we look
forward to seeing the results of such applications.

7 CONCLUSION

In this paper, we have discussed a novel approach to analyzing
user interaction trails with interactive machine learning systems.
Numerical analytic provenance makes it possible to study analytic
provenance by constructing state models from the logs of interac-
tive systems, particularly when certain crucial interactions produce
a new model. Vectors representing models are shown in a layout
that reflects their similarity, creating a backdrop for an interactive
visualization annotated with the full spectrum of available interac-
tion information. To showcase this concept, we have provided an
implementation, ModelSpace, with an array of features for explor-
ing analytic provenance in a visualization of the state models. We
applied ModelSpace to two case studies of model-steering visual
analytics systems using logs generated from their original evaluation
experiments. Additionally, we provided an example application of
ModelSpace to a non-visual analytic system, showing how to apply
the vectorization principle for interactions with an image search tool.
The case studies demonstrated the effectiveness and wide applica-
bility of ModelSpace and of numerical analytic provenance concept
by making it possible to explore the interaction data from those
experiments and reveal patterns that would have been difficult to
discover without such a tool.
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