Providing Contextual Assistance in Response to Frustration
in Visual Analytics Tasks

Prateek Panwar*

Adam Bradley®

Christopher Collins*

University of Ontario Institute of Technology

Step 1: User performing a visual analytics task o

. Step 2: Emotional responses caused by the task

<

Step 3: Feeding back the detected emotion

Gaze data

GSR data j Data Processing

Feature Extraction ] [

o Detected
Classification Emotion

L Step 4: Generating recommendations based on the detected emotion

Figure 1: Work flow of the proposed model — appropriate assistance is provided based on detection of frustration state.

ABSTRACT

This paper proposes a method for helping users in visual analytic
tasks by using machine learning to detect and respond to frustration
and provide appropriate recommendations and guidance. We have
collected an emotion dataset from 28 participants carrying out inten-
tionally difficult visualization tasks and used it to build an interactive
frustration state detection model which detects frustration using data
streaming from a small wrist-worn skin conductance device and
eye tracking. We present a work-in-progress design exploration
for interventions appropriate to different intensities of frustrations
detected by the model. The interaction method and the level of inter-
ruption and assistance can be adjusted in response to the intensity
and longevity of detected user states.

Index Terms: Human-centered computing— Visualization—
Visualization theory, concepts and paradigms; Human-centered
computing—Human computer interaction (HCI)—Interaction
paradigms

1 INTRODUCTION

Information visualization (InfoVis) helps users to understand trends
and patterns in big data. There are common analytic workflows
which have been shown to be effective in analysis. Novice analysts,
or even experts faced with new interfaces or datasets may find analy-
sis challenging, requiring high cognitive attention [10,22]. Some of
the significant challenges are: (1) Dealing with a complex dataset
involving multiple variables; (2) Using a new or unfamiliar dataset
where the nature of the data is unknown; (3) Using a new tool or
merely a new visualization. Any of these cases requires extra effort
from the user which results in a high cognitive load. Moreover,
working in a real world scenario where things like deadline pressure,
work stress, and personal life crises are a normal part of work life
and can affect a user’s performance [5], it often becomes difficult to
stay focused while solving these data analysis tasks.

Furthermore, getting stuck in a difficult visual analytics task for
a long period could induce a range of negative emotions such as

“e-mail: prateek.panwar@uoit.ca
fe-mail: adam.bradley @uoit.ca
fe-mail: christopher.collins @uoit.ca

frustration and anger; which would increase the likelihood of disen-
gagement. For example, if a user is new to a particular visualization
tool and encountered problems while doing a task due to the com-
plex user-interface (UI), then the user may experience a range of
negative emotions because this complexity is blocking the workflow
and distracting his attention. Therefore, after a certain amount of
time the user will feel demotivated and ultimately disengage [1].

There are many existing visualization tools available which help
in facilitating the data analysis process such as Tableau and Mi-
crosoft Power BI, as well as many custom-made solutions for specific
scenarios and problems, and solutions reported in the visualization
literature. Using these software tools could be frustrating for users,
either due to the many interface features or due to the dataset and
analysis tasks. We are interested in the potential for support systems
which would provide users with meaningful recommendations or
guidance to help them to overcome data- and task-related issues and
hence, prevent disengagement.

Providing meaningful recommendations in a visual data analytic
tools is a challenging task because: (1) Recommendation systems
need to know when it is the right time to intervene as continuously
providing help may cause distraction; (2) If a user is stuck and feel-
ing frustrated, the system doesn’t know the cause of the frustration
and how to fix it (the same emotion can occur for different contexts:
interface-related, data-related or external factors); (3) System cannot
predict the intensity of an emotion and therefore, fail to vary its
intrusiveness accurately. Traditional interaction is single-initiative
(one-sided). That is, users provide explicit input, and then system
responds. This work argues that to build a smart recommendation
system, there is a need for leveraging mixed-initiative interaction (bi-
directional interaction) approach so that the system could understand
implicit cues from the user and react accordingly.

A user’s emotional state can be detected by capturing data from
physiological sensors (e.g. electroencephalogram (EEG), electro-
cardiogram (ECG) and, skin conductance) or physical sensors (e.g.
facial expression, speech, body posture and gaze tracking) or a com-
bination of both. When selecting between various biometric sensor
options, we prioritized those which were less intrusive and less likely
to cause discomfort. We decided to use the combination of a gal-
vanic skin response device (GSR), and an eye tracker to measure
arousal and valence. We recorded skin conductance from the GSR
device and gaze location and pupil diameter from the eye tracker.

It is likely that in analytic tasks the detected features (e.g., gaze
scan-paths) will be different than when reading a text, looking at
an image, or playing a video game. Visual analytics requires visual



i ' (e

Figure 2: The PivotSlice visualization tool [26]. The interface is divided
into six sections: (a) search panel, (b) task panel, (c) information panel,
(d) unfiltered area, (e) filter axes, and () filtered area.

search and pattern-finding, which is very different from left-to-right
reading. Therefore, a specific model for this scenario is required.
Using two types of sensors (GSR and eye tracker), we compiled a
dataset and model from 28 participants performing visual analytics
tasks with a visualization interface called PivotSlice [26] (see Fig-
ure 2). The interface visualizes published research documents in a
scatter plot-based design and allow users to customize the visualiza-
tion by adding multiple filters and making queries. For example, the
total number of authors who published a journal paper in the years
between 2011 and 2014 in the InfoVis conference.

The collected data was later used to train a machine learning clas-
sifier. We tested various classifiers on the dataset, with the random
forest classifier achieving the highest accuracy of 88% in differen-
tiating between a frustration state and a normal state. The details
about the user study design, data processing and the classification
model can found in our previous work [13].

For building a smart recommendation system, we followed the
key principles of Conati et al. [2] and Olmo et al. [3] in adaptive
visualization contexts, and applied them to our model. The three
key principles are: when to show help, what type of help should be
shown, and how to show the help. Making these steps the foundation
of this work, we explored the design space of interventions and
recommendations that could potentially aid in the improvement of
the users’ performance.

2 RELATED WORK

Recommendation systems have been extensively studied and are
successfully implemented in many different areas; for example, in
games [14], e-commerce [17], and tutoring systems [24]. Usually,
these systems construct a user profile for each individual and use
implicit or explicit feedback from the users to learn about their
preferences.

An article by Isinkaye et al. [9] provides detail about the princi-
ples, methods and evaluation techniques for recommendation sys-
tems. In this work, the authors talk about how implicit and explicit
feedback can be used to learn users’ preferences and list the pros
and cons of each feedback type. Also, the article explores different
recommendation techniques — content-based filtering, collabora-
tive filtering and hybrid filtering. This article provided us with a
clear understanding of the types of feedback and techniques that
can be used to build a recommendation system. Voigt et al. [21]
have discussed some of the challenges of data scale and proposed a
context-aware recommendation algorithm which leverages online
annotations to provide help. Similarly, Gotz et al. [7] have proposed
a system that generates recommendations in visualization, driven by
user behaviour (implicit signals) and successfully reduced overall

CcH# Python Java

GSR API

Data transfer
using UDP

Final output transfer
Using UDP

Eye Tracker API }

o
=
@
2
o
S
5]
&
8
©
a

Feature Extraction
Classification

Figure 3: Internal working of the frustration detection model. Different
platforms are communicating using UDP socket programming.

task completion times and errors.

Steichen et al. [18, 19] have proposed a method for adapting as-
pects of visualization with every individual by measuring a user’s
cognitive abilities and predicting performance from eye gaze data.
The research questions this article tried to answer were: (1) To what
extent can a user’s current task, performance, long-term cognitive
abilities, and visualization expertise be inferred from eye gaze data?
(2) Which gaze features are the most informative? Moreover, the
authors talked about how the visualization interface can change
its functions and provide user-specific support. Additionally, they
investigated gaze areas of interest for finding which part of the in-
terface should be changed to support the user’s cognitive abilities.
Finally, the authors found that the linear regression model consis-
tently achieved the highest accuracy but overall accuracy for each
was in the range of 55% to 60%. Also, the results indicated that the
contribution of features changes with every task goal but the area of
interest related gaze features were most crucial.

Lastly, a study by Sun et al. [20] detects mental stress using a
combination of ECG, GSR and accelerometers. Here, the authors
used arithmetic problems for inducing stress in participants and then
recorded the emotional response signals using a combination of
biosensors. In their study, the decision tree algorithm achieved the
highest accuracy. Lastly, the authors found that the GSR features
were independent of tasks.

These papers informed our understanding of biosensors for de-
tecting mental states, and the common experimental designs in this
research area. Additionally, there are many research studies that use
various combinations of bio-sensors [11, 12, 16,25] for building a
machine learning emotion classifier.

3 FRUSTRATION DETECTION CLASSIFIER

Our previous work has a detailed explanation of the feature extrac-
tion process and the classification model for detecting frustration
state in analytic tasks [13].To briefly summarize, the collected raw
data from the user study was processed to remove high frequency
noise from the GSR and pupil diameter data using low-pass filters.
We then used a standardization technique and re-scale the data be-
tween 0 and 1. Next, gaze samples with low confidence scores
were removed and replaced using a linear interpolation technique,
and fixations (maintaining of the visual gaze (focusing) on a single
location) and saccades (gaze movement between two fixations (dis-
tance)) were calculated from the gaze location data. We calculated
a total of 21 features from the dataset: 8 from the pupil size, 5
from gaze location, and 8 from the GSR data. Since the GSR and
pupil size signals are linear, we calculated the features which would
change with the deviation in the signal baseline. For example —
mean, standard deviation and number of maxima in a processing
window (here 10 seconds). From the gaze location data, we calcu-
lated features related to the fixation and saccade as any change in
the mental state would affect these values. For example, users tend
to fix their gaze on a certain point in case of high cognitive load
(lesser number of saccade) [6]. The features related to gaze locations
were — number of fixations, mean saccade length, mean fixation
duration and standard deviation of fixation points from the centroid



Sequence Weight Distribution
TTTTFFFF 1+2+3+4=10
TFTFTFTF I+1+1+1=4
FTTTTTTT 14243+4+5+6+7 =28

Table 1: Weight distribution of sequences for estimating the intensity
of detected frustration.

of all the fixations in the window (indicating the extent of the area
of interest). Also, this feature set was found to be most contributing
towards achieving high accuracy in the past literature [15,20, 25].
The finalized feature set was used to test different classifiers, with
the random forest classifier achieving the highest accuracy, 88%.

We optimized the model by selecting only those features which
were contributing with the most impact towards the accuracy of the
model. This step was necessary as the classifier needed to work
on a live stream of data coming from the biosensors and needed
to be fast. For that, we used a brute force technique and tested the
accuracy of the model with all the arrangements and combinations
of the features. After a certain number of combinations, the accuracy
remained approximately constant. We picked the combination which
gave the maximum accuracy for our classifier. Finally, we reduced
the total number of features from 21 to 7.

In this work, we used the same model as in our previous work, but
instead of reading biosensor data from a saved file, the model now
uses User Datagram Protocol (UDP) socket programming to read
the data directly from the biosensors (GSR and eye tracker) with
low latency. We merged the data processing, feature extraction, and
classification steps into a single Python program. We also leveraged
UDP socket programming to send the final detected state data to the
visualization tool built in Java. Figure 1 gives an overview of the
internal working of the classifier. Since the classifier is working on
a 10 second window with 60% overlap, it is classifying a frustration
state (true or false) every 4 seconds and sending the results to the
visualization tool in the form of T for the frustration state, and F
for the normal state. We tested our model with different window
sizes and overlaps and achieved the highest accuracy with the above
mentioned settings. Lastly, the visualization tool is responsible
for analyzing the received mental state and generating a recom-
mendation. This implementation architecture allows the frustration
detection and classification to be separated from the visualization
tool and assistance engine.

For generating the recommendations and testing our model prior
to the follow-up user study, we simulated the data received by the
sensors with the existing data from 28 participants. To achieve this,
the system reads participants’ raw data and perform the calculation in
precisely the same frequency rate as the biosensors. This simulation
approach allowed us to compare the predicted results of the real-time
model with the previous model. It also helped us to move forward
to the intervention part without conducting another user study.

4 INTERVENTIONS

This section describes the process of generating meaningful rec-
ommendations based on the detected frustration state. Here, the
visualization interface back-end is receiving outputs using the UDP
socket programming and computing “when, what, and how” to inter-
vene.

We have demonstrated some of the ideas for interventions on a
specific interface (PivotSlice), but these ideas can be applied to other
visualization systems. Moreover, the concepts are explained in detail
but only a few were implemented, and none have been evaluated yet.

4.1 Detecting When to Help

Every 4 seconds, the visualization system receives the user’s cur-
rent state from the classifier. Saving these outputs in a list and
monitoring the sequence reflects the duration of frustration which
is correlated with the intensity of frustration. For example, if the
system has received constant T’s more than 15 times (1 minute), then
the frustration intensity is higher compared to receiving less T’s in 1
minute.

Since the system is classifying the frustration state every 4 sec-
onds, the next task was to trigger the assistance function only when
the system confidence is high. Taking action every 4 seconds would
make the system too sensitive, would consume more computational
power, and could also be tedious or annoying. Additionally, assigned
confidence scores would make the system robust towards wrong clas-
sifications. Consider a case where the system detected a frustration
state and displays help, based on the detected bio feedback every
4 seconds. This would divert the analyst from his task and induce
more frustration which will again be detected by the system. For
preventing this loop, there was a need to smooth the transition and
trigger an action only when the system is confident. This can be
determined by either a rule-based or machine learning technique.

4.1.1 Action Transition Smoothing

Instead of taking action every 4 seconds, we created a moving win-
dow of 32 seconds (eight classifications in a window) to smooth the
action transition and build-up confidence. The moving window is
overlapping 28 seconds, that is, leaving the first sample out. The ra-
tionale behind choosing a 32 second window was to provide enough
data to take reasonable and meaningful action but also minimizing
the risk of mixing two separate emotional phases in a single window.
We did not investigate the optimum window size for this case and
saved this part for the future work.

The system counts the total number of T’s in the 32 second win-
dow, and if the total T’s are more than or equal to a threshold value
of 5 T’s (20 out of 32 seconds), an action will be triggered. The
threshold is an average value based on patterns observed in study
participants’ data. Using a higher threshold makes the system less
sensitive and avoids taking actions on short-term frustration states
which last for less than 20 seconds. This threshold could be tuned
in further testing. For example, if the user repeatedly dismisses
recommendations, the threshold may go up.

Since frustration does not come back to the neutral state right
away, the system should ignore classifications produced right after a
recommendation has been displayed. If the total number of T’s are
five or more in the window, an action will be triggered. After that,
the system sleeps for the next 1 minute before monitoring the next
window. This period allows users to look at the recommendation,
use it, and give time for the impact to affect the emotional signals.
This also prevents the system from taking repetitive actions and
avoids the loop discussed above.

4.1.2 Intensity of a Frustration State

Another major component for building a smart intervention system
is to add the frustration state intensity information into the model.
As mentioned above, calculating the intensity of the detected frustra-
tion state can be used to infer the necessary intrusion level. Here, a
different sequence of T’s and F’s can tell the intensity or might also
differentiate between types of frustration states. For example, fol-
lowing are the three cases where a sequence of T and F are different
in a window:

FTTTTTTT
TTTTFFFF
TFTFTFTF

In the first sequence, there is a constant occurrence of T’s after the
first F. This may be an indication that the user is feeling strong



Use this bar to search -
for facets of the data. e}
1o/
F o

Figure 4: The system is using gaze location information to determine
where the user was looking at the time of frustration and providing a
mock-up recommendation based on that area. The red lines represent
the gaze path, and the black circles are the fixations.

" You can merg
* 1 data using the toggle g \ o
. button

o

@

m -

Figure 5: Dataset operation suggestion. Here, the system detected
the context as dataset-related and then suggested operations that
can be done on the dataset. The red lines are the gaze path and black
circles represents fixations.

frustration. Next, the number of T’s and F’s are the same in the last
two sequences, but the ordering is different. The second sequence
has four constant T’s which means a high-intensity frustration (short
term) that faded afterwards and the third sequence means light but
consistent frustration. Since these two frustration states are different,
the help for these sequences should be different too. Also, the
variation in these two sequences might classify the different type of
negative emotions and could be explored in the future work.

To differentiate between the sequences, we have created a rule to
assign a non-uniform weight to each T and calculate the total weight
for each window. The rule is — any T after an F would have a weight
of 1 and any immediate T after a T will have a weight one more
than the previous T. Table 1 shows some sequences and their weight
distributions. By using this formula, we were able to differentiate
between various sequences and hence calculate the intensity of
frustration for the user. This allows the system to condition the type
of help based on the frustration intensity of the user.

In summary, we calculated when to intervene by counting the
number of T’s in a 32 second window. Also, by using a weight
distribution formula, we have calculated the intensity of a frustration
state.

4.2 Deciding What to Recommend

Generating a meaningful recommendation for helping users relies on
knowing what is causing them frustration. Knowing the context is
important in this situation because a user can exhibit the same state of

Figure 6: Participant disengaged and looking away from the task
screen.

frustration for different reasons. Using the gaze signals, we classified
three different contexts which are first identified by the proposed
model, then a contextual help generated in response. These contexts
are: the interface, the dataset, or total disengagement. Knowing
the context would help in maximizing the chance of generating a
useful recommendation. For example, if a user is having problems
with the new visualization interface, then the system should not
show any dataset-related help. The help should be related to the
interface options or else the generated suggestion won’t be able
to help the user to overcome the issue causing frustration. For
differentiating between each contextual state, the system uses gaze
location information and calculates the centroid point of the area of
interest using fixations made in a particular window. In the future,
we will add more features such as the location of the most extended
fixation and the total fixation time per area of the screen for more
robust classification of the context.

The assumption, which admittedly requires further verification,
which drives our design is that the area of recent focus is likely to
be the source of any detected frustration. Observing sequences in
the 32 second frustration window helps the system to decide. For
example, if the system detects that a user is frustrated and out of
eight times (total samples in the 32 second frustration window), five
times the centroid was on the interface toolbar, then it implies that
the user might be having problems using the interface functions.

Figure 4 demonstrates the system capabilities in finding the possi-
ble source of frustration with the help of gaze location. In the figure,
the system is detecting the area on the interface when a frustration
state was detected and displaying a mock-up recommendation. We
are currently investigating the design dimensions of a recommenda-
tion, such as where to show the message box, what to display, and
what color to use. The three context classes are discussed in detail
below.

4.2.1 Interface

An interface-related problem occurs when a user doesn’t understand
the interface functions and options. This type of problem may
be more likely to occur with a new interface or one with many
functions on the screen. Also, in the user study we conducted, all
the participants were new to the interface, and even though detailed
instructions were demonstrated to them in the introductory session,
they used the provided interface manual often. Since going through
the manual every time is redundant, consumes time, and is a visual
search task by itself, the design of recommendations for the interface
is thus focused on providing contextual help on the screen to reduce



the need to consult the interface manual (one of the possible solutions
is shown in Figure 4). This would prevent the users from looking
away from the screen and thus may maintain task focus.

4.2.2 Dataset

Dataset-related problems occur when dealing with a new, unfamiliar
or a substantial multi-dimensional dataset. Imagine an experienced
analyst who is proficient with a given visualization tool, but is having
trouble finding elements of interest in a new dataset. Here, showing
interface-related help is not meaningful. Instead, recommendations
could include showing different operations that are possible on the
dataset. Figure 5 demonstrates a mock example where the system is
suggesting that the dataset can be merged to get common information
and also highlighting the button on the interface for merging. Other
ideas are, showing interesting parts in the dataset [23], suggesting
the user change the visualization view, or highlighting hidden and
unseen points in the dataset. Moreover, step-by-step guidance is also
possible to help the user to carry out complicated operations.

4.2.3 Disengagement

Disengagement is the case when a user is not looking at the screen.
In our user study, we observed that when participants felt frustrated
(later verified in retrospective think-aloud session) for an extended
period, they tended to look away from the screen (Figure 6). Us-
ing voice-based dialogues can be helpful in re-orienting the user’s
attention back to the screen as done by D’Mello et al. [4].

While in our lab-study environment, outside distractions were
reduced, but in the real world scenario, there are other factors that
could make the user look away. Forcing a user to return attention
to the screen could be annoying. There may be other appropriate
interventions. For example, after a period of disengagement, a
recommendation may replay the past few minutes of analysis, to
assist with resumption of the task. There is a need to investigate
this case in detail to better understand the source of disengagement.
Additional sensors may be required. We did not implement this case
as it would require a separate study. Hence, for this work, the system
can detect disengagement by analyzing the gaze data (loss of eye
tracking data for an extended period) but does not take any action.

In summary, we explored different types of contextual help that
can be generated based on user’s gaze information.

4.3 Deciding How to Recommend

Finally, after computing when to intervene and what to recommend
based on different contexts, the next and the final step is to show
the user help. Again, it is crucial to display the suggestion in a way
that it would not distract the user from the task and would adjust the
intrusion level according to the intensity of the detected frustration.
Deciding the way of showing a recommendation and considering
the intrusion level are the two major components discussed in this
section. There is a balance to achieve between overly interruptive
and prescriptive help and being too subtle and vague so that the
user does not notice. Hernandez-del-Olmo et al. talk about the
importance of considering the intrusion level in recommendation
systems because a useful help can still be annoying if displayed in
an intrusive way [8].

For better understanding of the intrusion level, consider an ex-
ample using the PivotSlice interface (shown in Figure 2). If a user
doesn’t know how to apply two or more filters (one of the interface
functions) on the interface then the system can help in three possi-
ble ways: (1) Giving a hint by displaying a short message over the
search panel; (2) Break down the help into steps and guide the user
by showing the help step-by-step; (3) Pause the interface and open
the instruction manual. All three ways can help the user, but which
one is the best is still an open question. One of the possible answers
can be to show help (1) when the frustration intensity is low, and the

user needs help for the first time. Help (2) is useful when the inten-
sity is medium, and the user didn’t understand help (1). Help (3) is
the extreme case which may be activated upon detecting that the user
is consistently getting confused with the filter functionality and help
(1) and help (2) are not enough. The system needs to show different
types of help depending on the intensity of frustration, as showing
the same suggestion every time won'’t benefit the user. Since users’
frustration intensity is directly affected by the interaction with the
recommendation system, the system should learn from the previous
interaction and decide the next recommendation based on the change
in frustration intensity.

4.3.1 Degree of Intervention and Guidance

Since we have calculated the intensity of the detected frustration
state using weights, we are able to calculate how much to intervene.
The overall idea is that when frustration is detected, the system will
analyze and compute how much to intervene based on the user’s
actions. For example, displaying a simple and less intrusive help
window when the intensity of the frustration is low such as, high-
lighting options or displaying hints about the dataset in the margins.
To adjust the intrusion level, we explained a simple approach —
firstly, check if the user has followed the recommendation or not.
The system can alter the guidance strategy based on this information.
For example, if the suggestion says to use the search bar for creating
a filter in the PivotSlice tool, then the backend part of the system
can track if the search box was successfully used or not.

If the user has used the suggestion and the window weight (frus-
tration intensity) decreased from the previous window, that means
the help worked. If the user has used the suggestion and still the total
weight of the window is increasing or constant, then the user needs
more guidance, and the intrusion level can be increased. Further-
more, if the system detects over a longer term that a user is frustrated
but not using the suggestion, that might be an indication that the user
doesn’t need that specific help. In this case, the system will display
a new help and keep the degree of intervention same.

In conclusion, we designed a rule-based approach that we ex-
plored in terms of sow a recommendation system should balance the
intrusion level and what factors a system should consider facilitating
a suggestion. This system is driven by data from a machine learning
classifier (frustration detection classifier) which uses data from two
biosensors. Replacing the recommendation rule set with a machine
learning approach may make the decision making more effective,
but this would require additional information and a separate model
trained for a specific application and task.

5 EXPLORING WAYS TO GENERATE RECOMMENDATIONS

After discussing how to show a recommendation and what are the
factors that should be considered before intervening, the next step is
to generate a recommendation that would guide the users and helps
them to sustain their engagement. For this, we investigated three
possible scenarios, and we explain below how a recommendation
can be generated based on each scenario.

When the Task is Known: This case can be applied to real-world
work-flows where the task remains the same and only the variables
change. For example, examining a company’s financial progress us-
ing the same visualization settings and targets but with a new dataset,
or a newly hired data analyst that is trying to understand relation-
ships between different variables using past reports. In other words,
when the start and end points are known, and the path between these
points is unknown.

When the task is known, displaying task-related help is possible
and can be valuable. In this case, the system can direct the user
to the right work-flow path and help the user to solve a particular
task. Chances of recommendation success are higher as the system
knows the form of the final expected result, but the suggestions are
not generalizable as the system is designed to solve a particular type



of task and can only generate recommendations which are related to
that dataset type and task.

When the Task is Unknown: In the case where the task is un-
known, the system also doesn’t know how it can be solved or what
to expect in the end. Therefore, the system can only show general
suggestions. For example, a system could make a dataset suggestion
to show outliers or to highlight data similar to the data currently in
the view. These data-driven suggestions may be applicable to many
tasks. In this case, the recommendations can only help users to un-
derstand the interface or dataset options and explore the possibilities,
but the support may or may not direct them to the right path for
solving the task. Here, the recommendations are more generalizable
as they are task independent but are not direct.

When Logs are Available: Here, the system uses data from pre-
vious users to decide on a recommendation for the current user in a
particular scenario. For example, if most of the previous users felt
frustrated at the beginning of the task and took similar approaches to
overcome that frustration then the system will analyze this trend and
generate a recommendation for the next user based on the most com-
mon remedy. This case is task independent and analyzes the trends
from the past logs to generate recommendations. We believe that
this is the best option because it increases the chances of generating
meaningful recommendations.

In conclusion, we discussed and demonstrated some ideas about
how the three key steps, “when, what and how”, can be answered
using frustration as feedback. Also, we explored the intervention
design space and went over the possible cases to generate automatic
recommendations.

6 RESULTS

In this paper we have argued that recommendation systems need to
understand the user’s mental state to answer “when, what and how”
to intervene. We demonstrated how to classify a user’s frustration
state, as detected through physiological signals, and how, when, and
why to use that information to generate useful recommendations in
the user interface.

Moreover, we explored this concept to fill the gaps in the exist-
ing recommendation techniques with mixed-initiative interaction,
specifically by detecting and analyzing a user’s frustration state and
the intensity of that feeling. Finally, we successfully built a working
recommendation model for a visual analytics tool that uses detected
frustration and its context to decide how to provide guidance. This
project contributes to the better understanding of mixed-initiative
interactions and machine-learning to customize visualization inter-
faces and opens up ample of future research opportunities.

7 LIMITATIONS AND FUTURE WORK

The project is in its early stages of development and requires imple-
mentation and experimental validation of the suggested intervention
techniques. The paradigm suggested here could be generalized to
additional analytic interfaces and scenarios. Moreover, calculating
an optimum frustration window size and classifying different nega-
tive emotions based on the weights could help the system to provide
more customized and contextual assistance.

REFERENCES

[1] D. Cernea, A. Ebert, and A. Kerren. A study of emotion-triggered adap-
tation methods for interactive visualization. In Proc. UMAP Workshops,
2013.

[2] C. Conati, E. Hoque, D. Toker, and B. Steichen. When to adapt:
Detecting user’s confusion during visualization processing. In Proc.
UMAP Workshops, 2013.

[3] F H. Del Olmo and E. Gaudioso. Evaluation of recommender systems:
A new approach. Expert Systems with Applications, 35(3):790-804,
2008.

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

S. D’Mello, A. Olney, C. Williams, and P. Hays. Gaze tutor: A gaze-
reactive intelligent tutoring system. Int. J. of Human-Computer Studies,
70(5):377-398, 2012.

J. E. Driskell and E. Salas. Stress and Human Performance. Psychology
Press, 2013.

L. Fridman, B. Reimer, B. Mehler, and W. T. Freeman. Cognitive load
estimation in the wild. In Proc. SIGCHI Conf. on Human Factors in
Computing Systems, p. 652. ACM, 2018.

D. Gotz and Z. Wen. Behavior-driven visualization recommendation.
In Proc. Int. Conf. on Intelligent User Interfaces, pp. 315-324. ACM,
2009.

F. Hernandez-del Olmo, E. Gaudioso, and J. G. Boticario. Evaluating
the intrusion cost of recommending in recommender systems. In Proc.
Int. Conf. on User Modeling, pp. 342-346. Springer, 2005.

F. Isinkaye, Y. Folajimi, and B. Ojokoh. Recommendation systems:
Principles, methods and evaluation. Egyptian Informatics Journal,
16(3):261-273, 2015.

D. Keim, G. Andrienko, J.-D. Fekete, C. Gorg, J. Kohlhammer, and
G. Melangon. Visual analytics: Definition, process, and challenges. In
Information Visualization, pp. 154—175. Springer, 2008.

H. Kurniawan, A. V. Maslov, and M. Pechenizkiy. Stress detection
from speech and galvanic skin response signals. In Proc. Int. Symp. on
Computer-Based Medical Systems, pp. 209-214. IEEE, 2013.

Y. Liu, O. Sourina, and M. K. Nguyen. Real-time eeg-based human
emotion recognition and visualization. In Proc. Int. Conf. on Cyber-
worlds, pp. 262-269. IEEE, 2010.

P. Panwar and C. M. Collins. Detecting negative emotion for mixed
initiative visual analytics. In Extended Abstracts of the SIGCHI Conf.
on Human Factors in Computing Systems, pp. LBW004:1-LBW004:6.
ACM, 2018.

N. Peirce, O. Conlan, and V. Wade. Adaptive educational games:
Providing non-invasive personalised learning experiences. In Proc.
Int. Conf. on Digital Games and Intelligent Toys Based Education, pp.
28-35. IEEE, 2008.

M. Rodrigue, J. Son, B. Giesbrecht, M. Turk, and T. Hollerer. Spatio-
temporal detection of divided attention in reading applications using
eeg and eye tracking. In Proc. Int. Conf. on Intelligent User Interfaces,
pp. 121-125. ACM, 2015.

N. Sharma and T. Gedeon. Objective measures, sensors and compu-
tational techniques for stress recognition and classification: A survey.
Computer Methods and Programs in Biomedicine, 108(3):1287-1301,
2012.

S. Sivapalan, A. Sadeghian, H. Rahnama, and A. M. Madni. Recom-
mender systems in e-commerce. In Proc. World Automation Congress,
pp. 179-184. IEEE, 2014.

B. Steichen, C. Conati, and G. Carenini. Inferring visualization task
properties, user performance, and user cognitive abilities from eye gaze
data. ACM Trans. on Interactive Intelligent Systems (TiiS), 4(2):11,
2014.

B. Steichen, M. M. Wu, D. Toker, C. Conati, and G. Carenini. Te,
te, hi, hi: Eye gaze sequence analysis for informing user-adaptive
information visualizations. In Int. Conf. on User Modeling, Adaptation,
and Personalization, pp. 183—-194. Springer, 2014.

E-T. Sun, C. Kuo, H.-T. Cheng, S. Buthpitiya, P. Collins, and M. Griss.
Activity-aware mental stress detection using physiological sensors. In
Proc. Int. Conf. on Mobile Computing, Applications, and Services, pp.
282-301. Springer, 2010.

M. Voigt, S. Pietschmann, L. Grammel, and K. MeiBiner. Context-
aware recommendation of visualization components. In Proc. Int. Conf.
on Information, Process, and Knowledge Management (eKNOW), pp.
101-109. Citeseer, 2012.

L. Wang, G. Wang, and C. A. Alexander. Big data and visualization:
methods, challenges and technology progress. Digital Technologies,
1(1):33-38, 2015.

K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory analysis via faceted browsing of
visualization recommendations. [EEE Trans. on Visualization and
Computer Graphics, (1):1-1, 2016.

B. P. Woolf. Building Intelligent Interactive Tutors: Student-centered
Strategies for Revolutionizing E-learning. Morgan Kaufmann, 2010.



[25]

[26]

J. Zhai, A. B. Barreto, C. Chin, and C. Li. Realization of stress
detection using psychophysiological signals for improvement of human-
computer interactions. In SoutheastCon, pp. 415-420. IEEE, 2005.

J. Zhao, C. Collins, F. Chevalier, and R. Balakrishnan. Interactive
exploration of implicit and explicit relations in faceted datasets. IEEE
Trans. on Visualization and Computer Graphics, 19(12):2080-2089,
2013.



	Introduction
	Related Work
	Frustration detection classifier
	Interventions
	Detecting When to Help
	Action Transition Smoothing
	Intensity of a Frustration State

	Deciding What to Recommend
	Interface
	Dataset
	Disengagement

	Deciding How to Recommend
	Degree of Intervention and Guidance


	Exploring Ways to Generate Recommendations 
	Results
	Limitations and Future Work

