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ABSTRACT

Machine Learning (ML) has positioned itself as a hot topic and
almost as a synonym to data analysis. However, most of the current
real world ML systems use models as black-boxes. Given this, the
big question that arises is: what about if model performance is
not the unique requirement to be fulfilled? Many real world users
will not trust in ML models they cannot understand and therefore
will not use them. To address this, new sub-fields of research have
been proposed to help users to interact and understand ML models,
and by this opening the black-box. In this paper we present a
selection of some of the most noteworthy papers of these sub-fields:
Interactive ML and Interpretable ML. We contribute a summary of
their main characteristics and contrast them to the more classical
ML. In addition, we describe some of the guidelines from the state
of the art, which can help design better and more user-centric ML
models and systems.

Index Terms: Machine Learning—Human-Computer Interaction—
Interactive Machine Learning—Interpretable Machine Learning

1 INTRODUCTION

Black-box Machine Learning (ML) is a term commonly applied to
the use of ML models that aren’t completely understood by users
entailing lack of trust and, therefore, hindering decision making.
This disadvantage increases with the use of newfangled technologies
such as Deep Learning where more parameters need to be adjusted
requiring large amounts of data. In black-box ML models, users
do not have anything to say about the produced results and the
system does not take into account the users expert feedback that
could greatly improve the overall performance of the system. As
Lipton [13] says: “While the ML objective might be to reduce error,
the real-world purpose is to provide useful information.

To address this, the research community has proposed sub-fields
that tend to open the black-box models by allowing users to interact
and interpret them better. In this paper we summarize some of
the most significant papers of two of those sub-fields: Interactive
ML and Interpretable ML. We contrast their suggestions with the
classic ML paradigm, and finally describe some of the guidelines
proposed on the current literature, which can guide on developing
more user-centric ML models and systems.

The Human Computer Interaction (HCI) field presents a great
amount of resources that can lead the way towards better and more
user-centric ML systems. For example, Holzinger [11] argues that
HCI can be of great benefit for supporting Knowledge Discovery
(KDD), suggesting that Interactive ML systems can improve their
outcomes by incorporating user feedback. In the same way, Dudley
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et al. [6] summarize the interaction elements that should be consid-
ered when designing Interactive ML systems, namely: sample re-
view, feedback assignment, model inspection and task overview.
Known strategies for implementing the first two elements are briefly
described in Sections 2.1 and 2.2. To the best of our knowledge,
although the model inspection and task overview interaction el-
ements do not have the same level of development, some related
works are presented in Section 2.3.

We argue that the model inspection element can be comple-
mented by producing different kinds of interpretations about the
model continuously refined thanks to feedback assignment. Model
interpretation indicates the ability to provide explanations about
their inner working which could help users understand their results.
In addition, these additional components could support the task
overview interface element because, as Doshi-Velez and Kim [5]
and Lipton [13] explain, model interpretation is used to achieve
other important requirements in user-centric ML systems such as
trust, unbiasedness, privacy, reliability, robustness, causality, trans-
ferability, informativeness and usability. More details are discussed
in Section 3.

The rest of the paper explains the general characteristics and
differences of classic ML versus more user-centric approaches. Then
we proceed to summarize some of the main findings of the Interactive
and Interpretable ML sub-fields, to conclude by describing some
guidelines on how to design such user-centric ML systems.

2 INTERACTIVE MACHINE LEARNING

Involving the user in the learning process is not a trivial task, and
for a long time it has not been the concern of both KDD and ML
fields. The Human-Computer Interaction (HCI) field, according to
Holzinger [10], cares about human perception, cognition, intelli-
gence, decision-making and interactive techniques of visualization.
By merging these fields, many research opportunities emerge in-
cluding the paradigm where algorithms can interact with agents
(humans) and optimize their learning behavior through these inter-
actions, as established by Holzinger [11]. A more formal definition
of Interactive ML is given by Dudley and Kristensson [6]: “... is a
co-adaptive process, driven by the user, but inherently dynamic in
nature as the model and user evolve together during training”.

As described by Fails and Olsen [8], classic ML generally has
some assumptions which can be addressed through the use of Inter-
active ML, such as:

¢ The introduction of many features in the model can become
noise and therefore affect its performance. An Interactive ML
system should provide to user the ability to perform feature
selection through a friendly interface and evaluate the change
produced immediately.

* There is not enough training data. Similar to feature selection,
the user also must be able to perform labeling under considera-
tion or by a systematic way and evaluate the change produced
in the model performance.



* Itis desirable that the system can adapt quickly to new training
data. Avoid overfitting, addressed by strategies such as cross-
validation, is one of the main concerns when designing ML
systems. In the context of Interactive ML, the user can take
decisions (e.g. labeling correction) in areas where decision
frontier is more fuzzy. Active Learning and Visual Interactive
Labeling, described in Section 2.2, support this user activity.

According to Fails and Olsen [8], an interface for Interactive ML
must meet the following requirements: train very quickly, accommo-
date hundreds to thousands of features, perform feature selection and
support tens to hundreds of thousands of training examples. From a
more generalized perspective, Dudley and Kristensson [6] provide 4
interface elements to be considered while designing an Interactive
ML system: sample review, feedback assignment, model inspec-
tion and task overview. A synthesis of Interactive ML scenario is
shown in Figure 1, where the first three elements previously men-
tioned enable the direct user interaction with the data or the model.
The task overview element is avoided because we considered is
transversal to whole system and it is closely related to user and task
context.
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Figure 1: Interactive Machine Learning scenario. Three of four ele-
ments presented in Section 2 are highlighted, describing the direction
of the interaction.

Next subsections describe some related concepts to tackle the
Interactive ML design process including some implementation sce-
narios. A more extensive revision about families of algorithms and
application domains in the context of integrating ML and Visual
Analytics can be found in Endert et al. [7].

For task overview, no one relevant work was found in the context
of Interactive ML because this interface element is closely related to
the specific knowledge domain. Nevertheless, Dudley et al. [6] argue
model accuracy and related metrics are not enough to evaluate the
task fulfillment and this interface element should provide visibility
of global objectives but also contextualize about other information
such as availability of training data.

2.1 Dimensionality Reduction

In general terms, according to Tenenbaum et al. [20] and Roweis and
Saul [18], Dimensionality Reduction (DR) deals with the problem
of finding meaningful low-dimensional structures (compact repre-
sentation) from high-dimensional data. For sample review, it is a
valuable technique for representing high-dimensional data in princi-
pally two dimensions to validate the data distribution. A good DR
representation can be one that allows evidence class separability,
in the context of classification. Some algorithms for DR are PCA,
t-SNE, proposed by Van der Maaten and Hinton [23], and UMAP,
developed by Mclnnes and Healy [14].

In the context of clustering, Wenskovitch et al. [24] discuss about
the combination of both techniques, contributing with a series of

design challenges and questions from an extensive literature review.
In the work of Wenskovitch and North [25], data is projected by DR
and a feedback assignment mechanism is provided to improve the
cluster computation in an iterative way.

2.2 Active Learning and Visual Interactive Labeling

One way of achieving feedback assignment is by leveraging users
for labeling data. Active Learning (AL), described in Figure 2,
consists of a series of analytical methods to select unlabeled data
and present it to users in the form of queries for label assignment
[11]. Independently of the querying method used, the success of
incorporating AL into an Interactive ML system lies on keeping the
user labeling effort to a minimum. This can be achieved by only
asking for feedback when the hope for a performance improvement
given a specific query is high, as specified by Olsson [16] and Tong
and Koller [22].
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Figure 2: Active Learning scenario. An oracle, typically a human,
is asked for labels according to criteria based on maximization of
performance improvement.

Visual Interactive Labeling (VIL), in contrast to AL, delivers to
user the selection of data candidates to be labeled. Nevertheless, user
cognitive load can be reduced by incorporating visual techniques
such as 2D Colormap, Class Coloring, Convex Hulls and Butterfly
Plot, as described by Bernard et al. [1]. AL and VIL are used in
scenarios where there is small amount of labeled data, and where the
domain knowledge from users can be useful to improve unreliable
predictions.

Complementing the work of Bernard et al. [1], they present a
comparison among multiple VIL and AL strategies. The decision
regarding to use either of the two methods depends highly on the
user task complexity, the sample review technique and the class sep-
arability. In general terms, both techniques can compete to produce
better and faster models.

2.3 Parameter Tuning and Error Discovery

Complementary to concepts previously described, we highlight two
useful strategies to be included into an Interactive ML system: pa-
rameter tuning and error discovery. For the first strategy, we clarify
that adjustment of model parameters does not imply necessarily to
provide the ability to modify the number of hidden layers or link
weights, talking about neural networks. The goal is to design inter-
action mechanisms usable for users even when these are not experts
in ML. In other words, putting model parameters in terms of task
domain, being this a non-trivial design decision. Some examples are
described below.

The work of Self et al. [19] concludes with a list of user actions
affecting implicitly the model parameters, consisting of: dragging
points to form one or more new clusters, dragging an outlier into
existing cluster, maximize one dimension weight and drag multiple
sliders to equally large weights. In a similar way, Kapoor et al. [12]
focus on provide users the ability to refine the parameters of the



confusion matrix according to their preferences and thus re-train the
model in an iterative way.

An example of Interactive ML system for error discovery is pre-
sented by Chen et al. [4]. From a website classification problem,
domain knowledge about the target class is introduced facilitating
error discovery through semantic data exploration. While elements
such as sample review and model inspection are introduced, an
eventual desire of Interactive ML systems is missing: the ability to
perform labeling correction and re-train the model to evaluate if it
improves its performance.

It is also important to highlight some works focused on implement
systems that learn explicitly from user knowledge and not refining
an specific algorithm proposed in literature. In Brown et al. [2],
users are able to build the distance function for two dimensions data
projection according to their own sense of distance. Chang et al. [3]
propose a tool for clustering steered by user, having significantly
higher quality than those from a pure algorithmic process.

3 INTERPRETABLE MACHINE LEARNING

In some scenarios, mechanisms to sample review and feedback
assignment (e.g. user labeling or parameter tuning) may not be
enough to successfully fulfill the user task. We argue model in-
spection implies opening the black-box model and presenting it
to user in an interpretable or explainable way. In other words, an
Interactive ML system is not necessarily interpretable in terms
of what model is learning and, in the opposite case, an Inter-
pretable ML system could not involve all enough elements of
interaction to perform the task in an usable and efficient way.

Nevertheless, the decision behind delivering interpretability to
users must be careful studied, because as Doshi-Velez and Kim [5]
explain, interpretability is necessary and appropriate when there is an
incompleteness in the problem formalization and can be avoided in
these two scenarios: “(1) there are no significant consequences for
unacceptable results or (2) the problem is sufficiently well-studied
and validated in real applications that we trust the systems decision,
even if the system is not perfect”.

Figure 3, based on Hohman [9], Doshi-Velez and Kim [5] and
Lipton [13], presents a condensed synthesis regarding to aspects to
consider when thinking in produce interpretability. These aspects
are grouped in six questions to be asked during the design process:

* Why do you need to produce interpretability? Should the
system be in the capacity to generate trust for predictions?
Does it protect sensitive information in the data?.

* Who is the user of the system? Is the user a ML theoretical or
a domain expert?

What are the most important elements of the data or the model
to visualize?

* How do you plan to represent those most important elements?
Is it important for user to interact with those elements?

* When generate interpretations? Is the model under continuous
refinement thanks feedback assignment or was the model
previously trained and validated?

* Where will the system be deployed? Is the system intended to
support a real-world problem in a company? Does the system
contribute to produce scientific advances in a specific ML sub-
field or any other knowledge domain?

Interpretable ML is not an isolated concept from Interactive ML,
meaning that explanations could be produced in an interactive way to
user considering the four interaction elements described in previous
sections. Complementary, designers must not forget the system is
constrained by an user task and users are those who are in the power

to determine if the task was effectively fulfilled. User evaluations for
interactivity and interpretability components, as in any HCI study,
must be considered.

3.1 Frameworks for Interpretability

Ribeiro et al. [17] develop LIME. Based on local interpretability, this
framework is able to explain predictions by learning an interpretable
model locally around the prediction. The authors show the potential
of the framework in applications based on tabular, image and text
data. Complementary, LIME is extended by Teso and Kersting [21]
to explain the query produced in an AL scenario. Local explanations
are the base of works focused on produce global interpretation as the
case of the proposal by Yang et al. [26]. From contribution matrix
representing the feature importance for every single data sample,
product of frameworks such as LIME, a binary tree is learned to ex-
plicitly represent the most important decision rules that are implicitly
contained in the black-box model.

In Section 1, we mention that Deep Learning models have the
disadvantage of being the least interpretable due to their large num-
ber of parameters. Contributions in this field have been achieved by
producing interpretation of the features learned at each layer of a
Neural Network, as demonstrated by Yosinski et al. [27] and Olah et
al. [15]. A more extensive literature review about interpretability in
Deep Learning can be found in Zhang and Zhu [28].

4 FUTURE WORK

The contribution of this work involves the definition of both Inter-
active ML and Interpretable ML as well as the description of some
related work in the context of natural language processing, image
recognition and tabular data. Section 2 presents the four interface
elements to consider when designing Interactive ML systems and
Section 3 constraints the design process of Interpretable ML systems
to six questions that allow to establish the purpose, target user and
some alternatives to produce explanations. The results of this effort
are the inputs of some future projects based on tabular data provided
by tax administration and town planning organizations where involv-
ing user knowledge to feed the ML system and facilitate decision
making has been determined as one of the main requirements.

The tax administration project implies to provide tax officers with
an enriched application to automate some of their tasks in terms of
taxpayer supervision and tax base estimation, among other functions
of the secretary of finance. Currently, data owners do not dispose of
labeled data, reason why training a traditional supervised learning
model is not feasible. As second aspect, users must be able to
visualize the data in real time to evidence the historic and current
situations producing insights from a descriptive perspective but
also supported by backstage models of classification and regression.
No less important, producing interpretations about, for instance,
the probability of avoidance is an important part of the system,
qualifying to tax officers to intervene taxpayers opportunely.

Similar to previous project, we develop a system able to provide
functionalities for town planning based on patterns found in cities
around Latin America and the Caribbean. From clustering algo-
rithms, users want to discover relationships among cities exhibiting
similar features. Some important system requirements are to ex-
plicitly demonstrate why a particular city is belonging to a certain
cluster and which ones are the most nearby cities according to user-
defined criteria and other ones defined by Dimensionality Reduction
proximity.
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Figure 3: Aspects to consider when designing Interpretable ML systems. Based on Hohman [9], Doshi-Velez and Kim [5] and Lipton [13].
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